• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 11
  • Tagged with
  • 27
  • 27
  • 27
  • 27
  • 8
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

An evaluation of a finite element analysis

Anderson, Clifford E. (Clifford Eric), 1946- January 1971 (has links)
No description available.
12

Stress-strain hysteresis loops and rheological epicycles

Fancher, Douglas Roscoe, 1943- January 1968 (has links)
No description available.
13

Comparison between mathematical and model analysis of stresses in building frames

Nixon, Lewis Alfred January 1936 (has links)
The first experiment consisted of the making and testing of a cardboard model of a beam fixed at both ends. The results obtained from the model compared very favorably with the mathematical solution as there was a variation of only 1.8 percent. The second experiment was performed with a cardboard model of a bent fixed at both supports. The results from the model as compared to the mathematical solution could not be made to check very closely. There was a variation up to 10 percent in the influence lines for moment for horizontal loads, and a difference as high as 50 percent for vertical loads. It was found after the experiment was performed that the modulus of elasticity of the columns was about four times as great as the modulus in the girder. Then after making the correction in the mathematical solution for the difference in the modulus of elasticity there were only three points that showed a variation of over six percent, and most of the points were under 3½ percent. / M.S.
14

Stochastic analysis of multiple loads : load combinations and bridge loads.

Larrabee, Richard Dunlap January 1978 (has links)
Thesis. 1978. Ph.D.--Massachusetts Institute of Technology. Dept. of Civil Engineering. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Vita. / Bibliography: leaves 363-373. / Ph.D.
15

The behaviour and design of thin walled concrete filled steel box columns

Mursi, Mohanad, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2007 (has links)
This thesis investigates the behaviour of hollow and concrete filled steel columns fabricated from thin steel plates. The columns are investigated under axial, uniaxial and biaxial loading. The currently available international standards for composite structures are limited to the design of concrete filled steel columns with compact sections and yield stress of steel up to 460 N/mm2. This thesis consists of both experimental and analytical studies and design recommendations for future use. Three comprehensive series of experimental tests are conducted on hollow and concrete filled steel columns. The principal parameters that have been considered in the test programmes are the slenderness of the component plates, the yield stress of the steel and the loading conditions. In the first test series, three slender hollow steel columns and three slender composite columns are tested under uniaxial loading. The steel utilised is mild steel. High strength steel is utilised in the second test programme. In this test series four stub columns, eight short columns and eight slender columns are tested, each set consists of four hollow and four composite columns. Short columns are tested under axial loading to investigate the confinement effect provided by the steel casing. Slender columns are tested under uniaxial loading to investigate the coupled instability of local and global buckling. The third test programme is quite novel and considers the behaviour of hollow and concrete filled steel columns fabricated with high strength structural steel plate and subjected to biaxial bending. In this test eight short columns and ten slender columns each of them consisting of hollow and composite columns are investigated under biaxial loading. Analytical models are developed herein to elucidate the behaviour of the hollow and composite columns considering cross section slenderness, yield stress and loading conditions. An iterative model considering the coupled global and local buckling in the elastic and plastic range incorporating material nonlinearities is developed to investigate the behaviour of slender columns fabricated from mild steel. An improved deformation control model is developed to investigate the behaviour of slender high strength steel columns considering the confinement effect and local and post-local buckling in the elastic and plastic range. Then a numerical model for biaxial bending is developed to study the behaviour of short and slender concrete filled high strength steel columns under biaxial loading incorporating interaction buckling considering material and geometric nonlinearities. The scope of the thesis presents a wide range of experimental and theoretical studies of an extremely novel nature. It demonstrates the benefit of confinement and the consideration of local and post-local buckling in the elastic and plastic range. It is hoped that this research will contribute to the area of composite steel-concrete structural applications.
16

Design of unreinforced masonry walls for out-of-plane loading / Craig Robert Willis.

Willis, Craig Robert January 2004 (has links)
"November 2004" / Bibliography: p.167-179. / xi, 333 p. : ill., photos (col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Focuses on behavioural models of masonry walls with a view to improving their accuracy and extending their application. Results include a numerical model and mathematical expressions capable of predicting the key stages of the non-linear load-deflection behaviour of walls subjected to vertical bending and axial loading; new mathematical expressions for horizontal and diagonal bending moment capacities that are dimensionally consistent and account for the beneficial effects of compressive stress; and. Experimental test data for masonry sections subjected to horizontal and diagonal bending, which were used in the development and verification of the new mathematical expressions. / Thesis (Ph.D.)--University of Adelaide, School of Civil and Environmental Engineering, 2004
17

GEOMETRICALLY NONLINEAR FINITE-ELEMENT ANALYSIS OF CIRCULAR AND ARBITRARY ARCHES

Calhoun, Philip Ray January 1980 (has links)
A curved nonlinear finite element is developed in this work to observe the behavior of slender arches which undergo large deformations. The derivation of the strain equation is based upon the assumption that cross sections of the undeformed state remain undeformed and plane, but not necessarily normal to the centroidal axis during deformation. It is also assumed that the strain will be small and the rotations will be finite. The in-plane bending and the buckling modes for arches with fixed end and hinged end supports are analyzed. Deep circular arches and deep arches with arbitrary geometry of the centroidal axis are studied. Vertical concentrated loads, uniformly distributed loads, a combination of concentrated and distributed loads, and nonsymmetrical loads are considered. The governing differential equations are differentiated with respect to time to give a system of rate equations. Using these equations, the original nonlinear differential equations are solved using the Runge-Kutta scheme with Simpson's coefficients. If the solution drifts, a Newton-Raphson iteration scheme is used to return the solution to the equilibrium path.
18

An interval indicator for the Runge-Kutta scheme

Shirley, George Edward, 1943- January 1968 (has links)
No description available.
19

Digital image-based finite element modeling : simulation of mechanically-induced bone adaptation

Koontz, John Timothy 05 1900 (has links)
No description available.
20

The behaviour and design of thin walled concrete filled steel box columns

Mursi, Mohanad, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2007 (has links)
This thesis investigates the behaviour of hollow and concrete filled steel columns fabricated from thin steel plates. The columns are investigated under axial, uniaxial and biaxial loading. The currently available international standards for composite structures are limited to the design of concrete filled steel columns with compact sections and yield stress of steel up to 460 N/mm2. This thesis consists of both experimental and analytical studies and design recommendations for future use. Three comprehensive series of experimental tests are conducted on hollow and concrete filled steel columns. The principal parameters that have been considered in the test programmes are the slenderness of the component plates, the yield stress of the steel and the loading conditions. In the first test series, three slender hollow steel columns and three slender composite columns are tested under uniaxial loading. The steel utilised is mild steel. High strength steel is utilised in the second test programme. In this test series four stub columns, eight short columns and eight slender columns are tested, each set consists of four hollow and four composite columns. Short columns are tested under axial loading to investigate the confinement effect provided by the steel casing. Slender columns are tested under uniaxial loading to investigate the coupled instability of local and global buckling. The third test programme is quite novel and considers the behaviour of hollow and concrete filled steel columns fabricated with high strength structural steel plate and subjected to biaxial bending. In this test eight short columns and ten slender columns each of them consisting of hollow and composite columns are investigated under biaxial loading. Analytical models are developed herein to elucidate the behaviour of the hollow and composite columns considering cross section slenderness, yield stress and loading conditions. An iterative model considering the coupled global and local buckling in the elastic and plastic range incorporating material nonlinearities is developed to investigate the behaviour of slender columns fabricated from mild steel. An improved deformation control model is developed to investigate the behaviour of slender high strength steel columns considering the confinement effect and local and post-local buckling in the elastic and plastic range. Then a numerical model for biaxial bending is developed to study the behaviour of short and slender concrete filled high strength steel columns under biaxial loading incorporating interaction buckling considering material and geometric nonlinearities. The scope of the thesis presents a wide range of experimental and theoretical studies of an extremely novel nature. It demonstrates the benefit of confinement and the consideration of local and post-local buckling in the elastic and plastic range. It is hoped that this research will contribute to the area of composite steel-concrete structural applications.

Page generated in 0.1212 seconds