• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Insight from the Depths of the Straits of Florida: Assessing the Utility of Atlantic Deep-water Coral Geochemical Proxy Techniques

Rosenberg, Angela D 04 May 2011 (has links)
This thesis addresses the utility of deep-water coral geochemistry and its potential to reconstruct oceanographic conditions in the Straits of Florida. Through stable isotope and elemental analyses of the carbonate skeletons and use of available geochemical proxy calibration equations, present and past environmental parameters were determined. Over the last several years, scientific expeditions to the bottom of the Straits of Florida have revealed hundreds of deep-water coral mounds and led to the collection of extensive oceanographic data, sediment samples, and deep-water coral specimens. In 2005-2006, an Autonomous Underwater Vehicle (AUV) was used to map the coral mound fields at five sites with the use of geophysical imaging technology, and the manned Johnson-Sea-Link II submersible was deployed for further exploration and sample collection. The AUV and the submersible CTD also measured numerous environmental parameters, including temperature and salinity. With the goal of reconstructing environmental parameters across the Straits of Florida, Scleractinian and gorgonian deep-water coral specimens were selected from three sites spanning the Straits. Each coral was sampled at the highest resolution possible and analyzed for stable isotopes and elemental concentrations. Resulting geochemical data, specifically d18O, d13C, Sr/Ca, and Mg/Ca, was then used with previously published and newly developed calibration equations to calculate temperature, salinity, and seawater density. Kinetic and vital effects were also examined and taken into account while reconstructing environmental parameters using the coral geochemistry. Additional reconstructions using stable isotopic values from benthic foraminifera corroborated the geochemical reconstructions, and analyses of pteropods and surface sediment samples provided further insight into the oceanographic conditions at the bottom of the Straits of Florida. Results from geochemical reconstructions agreed with in situ data, indicating that slightly warmer bottom temperatures exist on the eastern side of the Straits and salinity variability among the three sites is minimal. This suggests that the deep-water coral skeletons are sensitive recorders of the environmental conditions in which they lived. Ultimately, in situ measurements and reconstructed parameters showed that there is little variability across the bottom of the Straits and that Antarctic Intermediate Water (AAIW) is the only apparent water mass in the area at that depth. Moreover, comparison of the coral habitat from this study with others from around the world demonstrated that certain conditions are required for deep-water coral growth, and that these same parameters are common to deep-water reef systems throughout the globe. Further sampling and geochemical analyses of deep-water corals in the region may be used to gain additional insight into the oceanographic conditions surrounding the coral mounds both presently and in the past. As with other previously studied deep-water coral systems, this highlights the potential for the reconstruction of paleo environmental records from deep-water corals in the Straits of Florida.
2

The Trophic Ecologies of Larval Billfishes, Tunas, and Coral Reef Fishes in the Straits of Florida: Piscivory, Selectivity, and Niche Separation

Llopiz, Joel Kent 03 July 2008 (has links)
The processes influencing larval fish survival in the low-latitude open ocean are poorly understood, especially with regard to feeding. As part of a large-scale study that included two years of monthly sampling in the Straits of Florida (SOF), the objectives of this dissertation were to elucidate the larval fish feeding behaviors and strategies of 1) istiophorid billfishes, 2) tunas, and 3) coral reef fishes, while also 4) characterizing the feeding environment, synthesizing the dominant trophic pathways to fish larvae, and reviewing the literature for evidence of latitudinal distinctions in larval fish trophodynamics. Larval billfishes exhibited highly selective feeding, and their diets were numerically dominated (90%) by two genera of crustaceans, Farranula copepods and Evadne cladocerans. These prey were consumed throughout early larval ontogeny, from first-feeding through piscivorous lengths (> 5 mm), until piscivory became exclusive near 12 mm. High feeding incidence (0.94) and rapid digestion (~3.5 hrs) suggests frequent and successful feeding by billfish larvae. For tunas, nearly all larvae examined (>98%) contained prey. Thunnus spp. exhibited a mixed diet, while skipjack, little tunny, and Auxis spp. nearly exclusively consumed appendicularians. All four tuna taxa co-occurred in the western SOF where prey was more abundant, while in the central and eastern SOF (where prey availability was lower), only Thunnus spp. and skipjack were present. Additionally, these two taxa exhibited significantly different vertical distributions. Estimates of predatory impact indicated the potential for depletion of resources in the absence of the spatial and dietary niches of larval tunas. Coral reef fish families examined included Serranidae, Lutjanidae, Mullidae, Pomacentridae, Labridae, Scaridae, and Acanthuridae. Feeding incidences were high (0.94 to 1.0) for all taxa except scarids (0.04), and diets were narrow and predator-specific. Cluster analysis yielded clear groupings based on the selective feeding exhibited by the taxa, while within taxa, canonical correspondence analysis illustrated the change in diet with a variety of variables. The physical and biological environment varied markedly across the SOF, largely influenced by the Florida Current. Characteristics examined included thermocline depth, fluorescence, and abundances of total plankton and copepod nauplii. The feeding ecologies of the 21 taxa of fish larvae in this work were synthesized into qualitative and quantitative webs that illustrate the variable trophodynamic strategies of larvae in the SOF and the levels of community reliance upon zooplankton prey types. A review of 170 investigations on larval fish feeding revealed notable distinctions between high- and low-latitude regions, highlighting the substantial variability across environments in the role of larval fishes within the planktonic food web.
3

A Multidisciplinary Investigation of the Intermediate Depths of the Atlantic Ocean: AAIW delta^13C Variability During the Younger Dryas and Lithoherms in the Straits of Florida

Brookshire, Brian 2010 December 1900 (has links)
A transect of cores ranging from 798 m to 1585 m water depth in the South Atlantic Ocean document the relative intermediate water mass nutrient geometry and stable isotopic variability of AAIW during the Younger Dryas cooling event. The data reveal concurrent delta^13 C and delta^18 O excursions of 0.59 ppt and 0.37 ppt within the core of Antarctic Intermediate Water (AAIW) centered at 11,381 calendar years before present based on radiometric age control. A portion of the delta^1 3C variability (0.22 ppt) can be explained by a shift in thermodynamic equilibrium concurrent with a drop in temperature of 1.8°C at the locus of AAIW formation. The remaining 0.37 ppt increase in delta^13 C most likely resulted from increased wind velocities, and a greater coupling between the ocean and the atmosphere at the locus of AAIW formation (increased efficiency of the thermodynamic process). Deepwater coral mounds are aggregates of corals, other organisms, their skeletal remains, and sediments that occur on the seafloor of the world’s oceans. In the Straits of Florida, these features have been referred to as lithoherms. We use digital, side-scan sonar data collected from the submarine NR-1 from an 10.9 km^2 area at ~650 m water depth to characterize quantitatively aspects of the morphology of 216. Their lengths, widths, heights, areas, orientations and concentration on the seafloor have been determined. Analysis indicates that the outlines of relatively small to medium sized lithoherms can be effectively described with a piriform function. This shape is less applicable to the largest lithoherms because they are aggregates of smaller lithoherms. Nearly all of the lithoherms studied have axes parallel to the northward flowing Florida Current, and the heads of 80 percent of these features face into the current. The shape and orientation of the lithoherms, and evidence of megaripples and scouring in the sonar data suggest that these features are formed by a unidirectional current. Following an extensive investigation of over 200 lithoherms via side-scan sonar imagery and direct observation, we have developed a qualitative model for the formation of the lithoherm type of deep-water coral mounds in the Straits of Florida. Lithoherm formation can be characterized by four main stages of development: nucleating, juvenile, mature singular, and fused. Fused lithoherms can form via transverse and/or longitudinal accretion, however, transverse accretion at the head of the mound is likely the most efficient mechanism. A comparison of lithoherm spatial relationship to local bathymetry agrees with previous observations of deep-water coral mound formations along the levied margins of density flow scour channels.
4

Environmental Controls on Cold-Water Coral Mound Distribution, Morphology, and Development in the Straits of Florida

Simoes Correa, Thiago Barreto 05 February 2012 (has links)
Scleractinian cold-water corals are widely distributed in seaways and basins of the North Atlantic Ocean, including the Straits of Florida. These corals can form extensive biogenic mounds, which are biodiversity hotspots in the deep ocean. The processes that lead to the genesis of such cold-water coral mounds and control their distribution and morphology are poorly understood. This work uses an innovative mapping approach that combines 130 km2 of high resolution geophysical and oceanographic data collected using an Autonomous Underwater Vehicle (AUV) from five cold-water coral habitats in the Straits of Florida. These AUV data, together with ground-truthing observations from eleven submersible dives, are used to investigate fine-scale mound parameters and their relationships with environmental factors. Based on these datasets, automated methods are developed for extracting and analyzing mound morphometrics and coral cover. These analyses reveal that mound density is 14 mound/km2 for the three surveyed sites on the toe-of-slope of Great Bahama Bank (GBB); this density is higher than previously documented (0.3 mound/km2) in nearby mound fields. Morphometric analyses further indicate that mounds vary significantly in size, from a meter to up to 110 m in relief, and 81 to 600,000 m2 in footprint area. In addition to individual mounds, cold-water corals also develop in some areas as elongated low-relief ridges that are up to 25 m high and 2000 m long. These ridges cover approximately 60 and 70% of the mapped seafloor from the sites at the center of the Straits and at the base of the Miami Terrace, respectively. Morphometrics and current data analyses across the five surveyed fields indicate that mounds and ridges are not in alignment with the dominant current directions. These findings contradict previous studies that described streamlined mounds parallel to the northward Florida Current. In contrast, this study shows that the sites dominated by coral ridges are influenced by unidirectional flowing current, whereas the mounds on the GBB slope are influenced by tidal current regime. The GBB mounds also experience higher sedimentation rates relative to the sites away from the GBB slope. Sub-surface data document partially or completely buried mounds on the GBB sites. The sediments burying mounds are off-bank material transported downslope by mass gravity flow. Mass gravity transport creates complex slope architecture on the toe-of-slope of GBB, with canyons, slump scars, and gravity flow deposits. Cold-water corals use all three of these features as location for colonization. Coral mounds growing on such pre-existing topography keep up with off-bank sedimentation. In contrast, away from the GBB slope, off-bank sedimentation is absent and coral ridges grow independently of antecedent topography. In the sediment-starved Miami Terrace site, coral ridge initiation is related to a cemented mid-Miocene unconformity. In the center of the Straits, coral ridges and knobs develop over an unconsolidated sand sheet at the tail of the Pourtales drift. Coral features at the Miami Terrace and center of the Straits have intricate morphologies, including waveform and chevron-like ridges, which result from asymmetrical coral growth. Dense coral frameworks and living coral colonies grow preferentially on the current-facing ridge sides in order to optimize food particle capture, whereas coral rubble and mud-sized sediments accumulate in the ridge leesides. Finally, this study provides a method using solely acoustic data for discriminating habitats in which cold-water corals are actively growing. Results from this method can guide future research on and management of cold-water coral ecosystems. Taken together, spatial quantitative analyses of the large-scale, high-resolution integrated surveys indicate that cold-water coral habitats in the Straits of Florida: (1) are significantly more diverse and abundant than previously thought, and (2) can be influenced in their distribution and development by current regime, sedimentation, and/or antecedent topography.

Page generated in 0.06 seconds