• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 14
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 76
  • 76
  • 21
  • 21
  • 20
  • 19
  • 18
  • 16
  • 14
  • 14
  • 13
  • 11
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Effect of nozzle loads on the stress distribution inside unpartitioned plug type headerboxes

Nel, Hugh-Jean 11 June 2012 (has links)
M.Ing. / Dry air cooled heat exchangers form a vital part of industrial heat transfer systems, especially in countries where the supply and availability of clean cooling water is limited. Headerboxes are rectangular pressure vessels that act as the inlet distribution and outlet collection devices. As rectangular pressure vessels, headerboxes are subject to design codes such as ASME (ASME Section VIII, Division 1, 2007). Unfortunately ASME (ASME Section VIII, Division 1, 2007) offers no guidance on how to allow for the effect of external loads applied to the headerbox through the vessel’s nozzles. This creates a difficult situation, since vessel designers are mandated by ASME to consider the effects of nozzle loads by American Petroleum Institute standard 661 (API, 2006). The aim of this project was therefore to develop a closed form design methodology that accurately predicts the stresses inside a headerbox that is subject to external loadings as well as internal pressure. After extensive research it was decided that the only viable approach would be to extend ASME’s rigid frame theory. This was done, and a new set of equations describing the stress distribution inside a headerbox were derived. These equations were then tested using 2D Finite Element Analysis (FEA) to determine whether they represented the reality of the 2D model they described. It was found that the equations were accurate enough in 2D and the next step was to test the model experimentally and using full 3D FEA. A local manufacturer of air cooled heat exchangers was approached and they helped design an experimental specimen and agreed to fund its construction. Unfortunately, due to time constraints, it was not possible to build and test the specimen experimentally. The specimen geometry was then analysed using the Abaqus (Dassault Systѐmes Simulia Corp., 2010) FEA package. The 3D FEA analysis considered several different load cases. After carefully analysing the results it was seen that the rigid frame model could make useful qualitative statements about the effects of the nozzle loads, but it performed poorly as a quantitative prediction method. However, since the effects of the nozzle loads are generally quite small it is possible that, with appropriate safety factors, the rigid frame model could be used as a conservative design methodology. The usefulness of a commonly used empirical guideline was also examined. This project is far from conclusive and much more work is required to fully examine the usefulness of rigid frame theory. That being said, this project has made important steps towards a more complete understanding of rectangular pressure vessels and has shown possible ways forward.
12

The effect of residual stress distribution on the ultimate strength of tubular beam-columns

Barrett, Steven L. 01 January 1980 (has links)
Using data for the longitudinal residual stress distribution in welded steel tubes, curves describing these distributions are selected for study. Each of these curves are checked for static balance across the tube cross section. The curves that exhibit an imbalance are adjusted by a combination of a simplified model for each and the use of a computer program that is developed to calculate the resulting forces and moments on the cross section. The residual stress in the area of the tube wall opposite the longitudinal weld is found to be the most important in the adjustment to obtain exact equilibrium. The method of adjustment is rational and based on maintaining a smooth curve shape that matches the raw data the closest and producing a curve that is balanced within the accuracy limits required.
13

Stress concentrations in undercut spur gear teeth via the finite element method

Jalilvand, Jamshid January 1983 (has links)
An analysis of the influence of undercutting on the stress concentration factor for undercut gears using the finite element method is presented. The models used are in the shape of a whole gear with three teeth. The middle tooth is loaded assuming single-tooth contact. Thirty seven finite element models were used to compute stress concentrations in gear teeth. The results for non-undercut gears were compared with the Dolan and Broghamer results, and were not more than 9.5 percent different. The results are expressed in the form of a linear relationship giving the stress concentration factor at the root fillet as a function of the geometry of the tooth. It has been verified that this equation is an accurate formula for both undercut and non-undercut gears with nominal proportions. / Master of Science
14

Analysis of stiffened membranes by the finite element method

ABDEL-DAYEM, LAILA HASSAN. January 1983 (has links)
A survey for the different variational principles and their corresponding finite element model formulations is given. New triangular finite elements for the analysis of stiffened panels are suggested. The derivation of the stiffness matrix for these elements is based on the hybrid stress model. The boundary deflections for these elements are assumed linear. These elements are different in two aspects, the degree of the internal stress polynomials and the number and location of the stiffeners. Numerical studies are carried out and results are compared to the theoretical solutions given by Kuhn as well as to results of the compatible model. Convergence of the stress in stiffeners to the actual solution through mesh refinement is studied. Jumps in the stiffener stresses given by the new elements exist. The use of special Lagrangian elements at the interelement boundaries to eliminate some of these jumps is studied.
15

Early prediction of fracture in bodies bounded by random rough surfaces

Medina, Hector 01 January 2014 (has links)
Under certain loading conditions, surfaces topography coupled with materials degree of brittleness can significantly compromise the mechanical performance of structures. The foregoing remains valid even if roughness is intentionally introduced for engineering reasons. In either case, stress can concentrate. The case of the stress concentration in surfaces having randomly distributed pits is a problem that, although being very practical, yet it remains unsolved. The complexity of a random configuration renders difficult the problem of analytically finding relationships between surface parameters and markers indicative of mechanical failure. Another difficulty is the reproducibility of replicates of specimens possessing random rough surfaces, for destructive testing followed by statistical analysis. An experimental technique to produce highly controlled replicates of random rough surfaces (including modeling of degradation growth) was developed. This method was used to experimentally and statistically study the effects on fracture of early randomly degraded surfaces of poly methyl methacrylate (PMMA) versus topographical parameters. Growth of degradation was assumed to go from an engineering surface to one whose heights are normally distributed. (Early stage of degradation is meant to be that level of roughness which is in the neighborhood of the critical flaw size for a given material). Among other findings, it was found that neither stress nor strain alone can be used to predict fracture at this early stage of degradation. However, fracture location was found to be strongly correlated to the ratio of the root-mean square roughness (RMS) to auto correlation length (ACL), above some RMS threshold. This correlation decreases as the material becomes less brittle (i.e., decrease of Young’s modulus or increase of percent of elongation). Simultaneously, a boundary value problem involving traction-free random rough surfaces was solved using a perturbation method, assuming elastic and isotropic conditions. For small RMS/ACL ratio, the solution for the RMS stress concentration factor, kt was found to be: kt = 1 + 2*SQRT(2)*(RMS/ACL), which agrees very well with the experimental work. Finally, a generalization of stress concentration factor formulas for several geometrical configurations and loading conditions into the Modified Inglis Formula was proposed. Finite element analysis was carried out and comparison was made with both experimental and analytical results. Applications of these results are broad. In surface engineering, for example, our analytical solution can be coupled with Fick’s Law to find critical conditions under which a film could become unstable to random roughness. Additionally, in design and maintenance of surfaces in service, it can be used to preliminarily assess how stress concentrates in surfaces where well defined notches cannot be used as an approximation.
16

Stresses around neighbouring elliptical holes in flat plates.

Alexandrakis, Alkibiades January 1976 (has links)
Thesis. 1976. M.S.--Massachusetts Institute of Technology. Dept. of Ocean Engineering. / Microfiche copy available in Archives and Engineering. / Includes bibliographical references. / M.S.
17

Elastostatic interaction of multiple arbitrarily shaped cracks in plane inhomogeneous regions

Narendran, Vasantha Mohan January 1982 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Vasantha Mohan Narendran. / M.S.
18

A study of instability of elastic plates by BEM /

Lin, Jauhorng, January 1996 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1996. / Typescript. Vita. Includes bibliographical references (leaves 157-162). Also available on the Internet.
19

A study of instability of elastic plates by BEM

Lin, Jauhorng, January 1996 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1996. / Typescript. Vita. Includes bibliographical references (leaves 157-162). Also available on the Internet.
20

Finite Element Analysis of Cylindrical Inclusions

Wade, Thomas L. 01 January 1977 (has links) (PDF)
This paper presents a parametric study of the stresses in a matrix near a cylindrical inclusion. The Texas Grain Analysis Program (TEXGAP), a finite element approach, is used to model the problem. Eight different models are investigated which establish the stress effects of varying interlayer thickness, varying modulus of elasticity of inclusions and interlayers, and element size. The results, presented as plots of axial stresses, show a definite lowering of the stress in the area of inclusion termination as the interlayer thickness is increased from zero. A further stress decrease is noted with the addition of some inclusion elasticity. Similarly, the stresses also decrease as the interlayer becomes more elastic.

Page generated in 0.1549 seconds