• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 11
  • 11
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Two-Parameter Model (Kmax, ΔK) for Fatigue Crack Growth Analysis

Noroozi, Amir January 2007 (has links)
It is generally accepted that the fatigue crack growth depends on the stress intensity factor range (ΔK) and the maximum stress intensity factor (K<sub>max</sub>). Numerous driving forces were introduced to analyze fatigue crack growth for a wide range of stress ratios. However, it appears that the effect of the crack tip stresses and strains need to be included into the fatigue crack growth analysis as well. Such an approach can be successful as long as the stress intensity factors are correlated with the actual elastic-plastic crack tip stress-strain field. Unfortunately, the correlation between the stress intensity factors and the crack tip stress-strain field is often altered by residual stresses induced by reversed plastic deformations. A two-parameter model (ΔK<sub>tot</sub>, K<sub>max,tot</sub>) based on the elastic-plastic crack tip stress-strain history has been proposed. The applied stress intensity factors (ΔK<sub>appl</sub>, K<sub>max,appl</sub>) were modified and converted into the total stress intensity factors (ΔK<sub>tot</sub>, K<sub>max,tot</sub>) in order to account for the effect of local crack tip stresses and strains on the fatigue crack growth. The fatigue crack growth was regarded as a process of successive crack re-initiations in the crack tip region and predicted by simulating the stress-strain response in the material volume adjacent to the crack tip and estimating the accumulated fatigue damage. The model was developed to predict the mean stress effect for steady-state fatigue crack growth and to determine the fatigue crack growth under simple variable amplitude loading histories. Moreover, the influence of the applied compressive stress on fatigue crack growth can be explained with the proposed two-parameter model. A two-parameter driving force in the form of: Δκ = K<sub>max,tot</sub><sup>p</sup> ΔK<sub>tot</sub><sup>(1-p)</sup> was derived based on the local stresses and strains at the crack tip using the Smith-Watson-Topper (SWT) fatigue damage parameter: D = σ<sub>max</sub>Δε/2. The parameter p is a function of material cyclic stress-strain properties and varies from 0 to 0.5 depending on the fatigue crack growth rate. The effects of the internal (residual) stress induced by the reversed cyclic plasticity manifested themselves in the change of the resultant (total) stress intensity factors driving the crack. Experimental fatigue crack growth data sets for two aluminum alloys (7075-T6 and 2024-T351), two steel alloys (4340 and 4140), and one titanium alloy (Ti-6Al-4V) were used for the verification of the model under constant amplitude loading. This model was also capable of predicting variable-amplitude fatigue crack growth. Experimental fatigue crack growth data sets after single overloads for the aluminum alloy 7075-T6, steel alloy 4140, and titanium alloy Ti-6Al-4V were also used for the verification of the model. The results indicate that the driving force Δκ can successfully predict the stress ratio R effect and also the load-interaction effect on fatigue crack growth.
2

Development of a Two-Parameter Model (Kmax, ΔK) for Fatigue Crack Growth Analysis

Noroozi, Amir January 2007 (has links)
It is generally accepted that the fatigue crack growth depends on the stress intensity factor range (ΔK) and the maximum stress intensity factor (K<sub>max</sub>). Numerous driving forces were introduced to analyze fatigue crack growth for a wide range of stress ratios. However, it appears that the effect of the crack tip stresses and strains need to be included into the fatigue crack growth analysis as well. Such an approach can be successful as long as the stress intensity factors are correlated with the actual elastic-plastic crack tip stress-strain field. Unfortunately, the correlation between the stress intensity factors and the crack tip stress-strain field is often altered by residual stresses induced by reversed plastic deformations. A two-parameter model (ΔK<sub>tot</sub>, K<sub>max,tot</sub>) based on the elastic-plastic crack tip stress-strain history has been proposed. The applied stress intensity factors (ΔK<sub>appl</sub>, K<sub>max,appl</sub>) were modified and converted into the total stress intensity factors (ΔK<sub>tot</sub>, K<sub>max,tot</sub>) in order to account for the effect of local crack tip stresses and strains on the fatigue crack growth. The fatigue crack growth was regarded as a process of successive crack re-initiations in the crack tip region and predicted by simulating the stress-strain response in the material volume adjacent to the crack tip and estimating the accumulated fatigue damage. The model was developed to predict the mean stress effect for steady-state fatigue crack growth and to determine the fatigue crack growth under simple variable amplitude loading histories. Moreover, the influence of the applied compressive stress on fatigue crack growth can be explained with the proposed two-parameter model. A two-parameter driving force in the form of: Δκ = K<sub>max,tot</sub><sup>p</sup> ΔK<sub>tot</sub><sup>(1-p)</sup> was derived based on the local stresses and strains at the crack tip using the Smith-Watson-Topper (SWT) fatigue damage parameter: D = σ<sub>max</sub>Δε/2. The parameter p is a function of material cyclic stress-strain properties and varies from 0 to 0.5 depending on the fatigue crack growth rate. The effects of the internal (residual) stress induced by the reversed cyclic plasticity manifested themselves in the change of the resultant (total) stress intensity factors driving the crack. Experimental fatigue crack growth data sets for two aluminum alloys (7075-T6 and 2024-T351), two steel alloys (4340 and 4140), and one titanium alloy (Ti-6Al-4V) were used for the verification of the model under constant amplitude loading. This model was also capable of predicting variable-amplitude fatigue crack growth. Experimental fatigue crack growth data sets after single overloads for the aluminum alloy 7075-T6, steel alloy 4140, and titanium alloy Ti-6Al-4V were also used for the verification of the model. The results indicate that the driving force Δκ can successfully predict the stress ratio R effect and also the load-interaction effect on fatigue crack growth.
3

高強度GFRPのモードⅢ層間はく離疲労き裂進展におよぼす応力比の影響

松原, 剛, MATSUBARA, Go, 田中, 啓介, TANAKA, Keisuke 05 1900 (has links)
No description available.
4

高強度GFRPのモードⅡ層間はく離疲労き裂進展におよぼす応力比の影響

松原, 剛, MATSUBARA, Go, 尾野, 英夫, ONO, Hideo, 田中, 啓介, TANAKA, Keisuke 04 1900 (has links)
No description available.
5

Subcycle Fatigue Crack Growth Formulation for Constant and Variable Amplitude Loading

January 2016 (has links)
abstract: A previously developed small time scale fatigue crack growth model is improved, modified and extended with an emphasis on creating the simplest models that maintain the desired level of accuracy for a variety of materials. The model provides a means of estimating load sequence effects by continuously updating the crack opening stress every cycle, in a simplified manner. One of the significant phenomena of the crack opening stress under negative stress ratio is the residual tensile stress induced by the applied compressive stress. A modified coefficient is introduced to determine the extent to which residual stress impact the crack closure and is observed to vary for different materials. Several other literature models for crack closure under constant loading are also reviewed and compared with the proposed model. The modified model is then shown to predict several sets of published test results under constant loading for a variety of materials. The crack opening stress is formalized as a function of the plastic zone sizes at the crack tip and the current crack length, which provided a means of approximation, accounting for both acceleration and retardation effects in a simplified manner. A sensitivity parameter is introduced to modify the enlarged plastic zone due to overload, to better fit the delay cycles with the test data and is observed to vary for different materials. Furthermore, the interaction effect induced by the combination of overload and underload sequence is modeled by depleting the compressive plastic zone due to an overload with the tensile plastic zone due to an underload. A qualitative analysis showed the simulation capacity of the small time scale model under different load types. A good agreement between prediction and test data for several irregular load types proved the applicability of the small time scale model under variable amplitude loading. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2016
6

PREDICTING THE DYNAMIC BEHAVIOR OF COAL MINE TAILINGS USING STATE-OF-PRACTICE GEOTECHNICAL FIELD METHODS

Salehian, Ali 01 January 2013 (has links)
This study is focused on developing a method to predict the dynamic behavior of mine tailings dams under earthquake loading. Tailings dams are a by-product of coal mining and processing activities. Mine tailings impoundments are prone to instability and failure under seismic loading as a result of the mechanical behavior of the tailings. Due to the existence of potential seismic sources in close proximity to the coal mining regions in the United States, it is necessary to assess the post-earthquake stability of these tailings dams. To develop the aforementioned methodology, 34 cyclic triaxial tests along with vane shear tests were performed on undisturbed mine tailings specimens from two impoundments in Kentucky. Therefore, the liquefaction resistance and the residual shear strength of the specimens were measured. The laboratory cyclic strength curves for the coal mine specimens were produced, and the relationship between plasticity, density, cyclic stress ratio, and number of cycles to liquefaction were identified. The samples from the Big Branch impoundment were generally loose samples, while the Abner Fork specimens were dense samples, older and slightly cemented. The data suggest that the number of loading cycles required to initiate liquefaction in mine tailings, NL, decreases with increasing CSR and with decreasing density. This trend is similar to what is typically observed in soil. For a number of selected specimens, using the results of a series of small-strain cyclic triaxial tests, the shear modulus reduction curves and damping ratio plots were created. The data obtained from laboratory experiments were correlated to the previously recorded geotechnical field data from the two impoundments. The field parameters including the SPT blow counts (N1)60, corrected CPT cone tip resistance (qt), and shear wave velocity (vs), were correlated to the laboratory measured cyclic resistance ratio (CRR). The results indicate that in general, the higher the (N1)60 and the tip resistance (qt), the higher the CSR was. Ultimately, practitioners will be able to use these correlations along with common state-of-practice geotechnical field methods to predict cyclic resistance in fine tailings to assess the liquefaction potential and post-earthquake stability of the impoundment structures.
7

An evaluation of partial depth dry bottom-feed vibro stone columns to support shallow footings in deep soft clay deposits

Serridge, Colin J. January 2013 (has links)
Ground Improvement using vibro stone columns is gaining increasing acceptance on marginal soft clay sites as a sustainable foundation solution, particularly for lightly loaded low-rise structures supported by shallow, narrow footings. Most experience in this context however has been with widespread loads and use of the wet top-feed stone column technique, which has now been largely superseded, on environmental grounds, by the dry bottom-feed technique, and for which no significant published field trial data currently exists in deep soft clay deposits in the context of shallow, narrow footings. This research is therefore principally concerned with evaluating both the ground response to installation of partial depth vibro stone columns using the dry bottom-feed method in a deep moderately sensitive soft clay soil, together with the influence of parameters such as stone column spacing and length, founding depth within a thin surface 'crust', and also foundation shape on the performance of narrow footings subsequently constructed and subjected to incremental loading, over the installed stone columns, at the Bothkennar soft clay research site in Scotland. Comparisons are made with footings constructed within the surface 'crust' at Bothkennar without stone columns. Whilst stone columns were satisfactorily constructed with the dry bottom-feed technique at Bothkennar, it was evident that the vibroflot should not remain in the ground for longer than is necessary, in order to avoid excessive soil disturbance. For this reason construction of partial depth stone columns to a more uniform diameter, without construction of an 'end bulb', is advocated. Stress ratio was found to increase significantly with increasing length of stone column and also applied load, up to a maximum value of around 4.0. Moreover, for a trial footing founded at the base of the 'crust', stresses attracted by the columns were higher than all other columns where founding depth (level) was at shallower depth in the crust. A significant stress transfer was also measured beneath the toe of columns intentionally installed shorter than the minimum design length predicted by the Hughes and Withers (1974) approach at all iii applied loads, but not for columns equal to, or longer than minimum design length, confirming the predictions of this laboratory-based approach at the field scale. The stress measurements recorded by the field instrumentation demonstrate that the behaviour of the composite stone column-soil-foundation system is complex, with simultaneous and interdependent changes in pore pressures, soil stress ratios and resulting stiffness of both soil and columns. Whilst observed settlements exceeded those predicted, with larger foundation settlements observed at low applied loads over stone columns than at the same loading level in untreated ground, principally due to soil disturbance and accelerated consolidation effects during initial loading, at higher applied loadings however the stone columns significantly reduced the rate and magnitude of settlement compared to a foundation in the untreated 'crust'. It is therefore clear that the stone columns 'reinforced' the weak soil, providing a significantly increased factor of safety against bearing failure.
8

Assessment Of Soil

Unutmaz, Berna 01 December 2008 (has links) (PDF)
Although there exist some consensus regarding seismic soil liquefaction assessment of free field soil sites, estimating the liquefaction triggering potential beneath building foundations still stays as a controversial and difficult issue. Assessing liquefaction triggering potential under building foundations requires the estimation of cyclic and static stress state of the soil medium. For the purpose of assessing the effects of the presence of a structure three-dimensional, finite difference-based total stress analyses were performed for generic soil, structure and earthquake combinations. A simplified procedure was proposed which would produce unbiased estimates of the representative and maximum soil-structure-earthquake-induced iv cyclic stress ratio (CSRSSEI) values, eliminating the need to perform 3-D dynamic response assessment of soil and structure systems for conventional projects. Consistent with the available literature, the descriptive (input) parameters of the proposed model were selected as soil-to-structure stiffness ratio, spectral acceleration ratio (SA/PGA) and aspect ratio of the building. The model coefficients were estimated through maximum likelihood methodology which was used to produce an unbiased match with the predictions of 3-D analyses and proposed simplified procedure. Although a satisfactory fit was achieved among the CSR estimations by numerical seismic response analysis results and the proposed simplified procedure, validation of the proposed simplified procedure further with available laboratory shaking table and centrifuge tests and well-documented field case histories was preferred. The proposed simplified procedure was shown to capture almost all of the behavioral trends and most of the amplitudes. As the concluding remark, contrary to general conclusions of Rollins and Seed (1990), and partially consistent with the observations of Finn and Yodengrakumar (1987), Liu and Dobry (1997) and Mylonakis and Gazetas, (2000), it is proven that soil-structure interaction does not always beneficially affect the liquefaction triggering potential of foundation soils and the proposed simplified model conveniently captures when it is critical.
9

Effects Of Soil Structure Interaction And Base Isolated Systems On Seismic Performance Of Foundation Soils

Soyoz, Serdar 01 July 2004 (has links) (PDF)
In this thesis primarily structural induced liquefaction potential was aimed to be analyzed. Also the effect of base isolation systems both on structural performance and liquefaction potential was studied. FLAC software was chosen for the analyses so that structure and soil could be modeled together. By these means the soil structure interaction effects were also examined. Four different structures and three different sites were analyzed under two different input motions. All the structures were also analyzed as base isolated. It was mainly found that depending on the structural type and for a certain depth the liquefaction potential could be higher under the structure than the one in the free field. Also it was concluded that base isolation systems were very effective for decreasing the story drifts, shear forces in the structure and liquefaction potential in the soil. It was also found that the interaction took place between structure, soil and input motions.
10

Monotoni procesi deformisanja pri hladnom zapreminskom oblikovanju i njihova primena za određivanje dijagrama granične deformabilnosti / Monotonic forming processes in cold forming and application for determination of forming limit diagram

Ivanišević Aljoša 28 September 2018 (has links)
<p>Istraživanja prikazana u disertaciji imala su za cilj razvoj monotonih modela deformisanja u cilju njihove primene za određivanje dijagrama granične deformabilnosti. Kombinacijom različitih geometrija uzoraka, geometrije alata i triboloških uslova razvijeni su monotoni modeli deformisanja koji su promenjeni za određivanje dijagrama granične deformabilnosti.</p> / <p>Research presented in this dissertation was conducted in order to develop monotonic forming processes suitable for determination of forming limit diagram. Combining different geometries of billets as well as tools and friction conditions monotonic models are developed and applied for determination of forming limit diagram.</p>

Page generated in 0.0939 seconds