• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of sequential Campylobacter jejuni 81-176 lipooligosaccharide core truncations on stress survival and pathogenesis

Naito, Mizue 11 1900 (has links)
Campylobacterjejuni, a Gram-negative enteric pathogen, is the leading cause of bacterial gastroenteritis in the developed world. A C. jejuni strain 8 1-176 transposon library was used to screen for mutants over-producing a calcofluor white (CFW)-reactive polymer implicated in biofilm formation. This identified two lipooligosaccharide (LOS) core mutants: one defective for a two-domain glycosyltransferase (lgtF), and the other defective in a heptosyltransferase (waaF). To determine if other LOS core mutants displayed a similar phenotype, and to explore other biological outcomes of step-wise LOS truncations on C. jejuni stress resistance and pathogenesis, mutant strains defective for GaiT and CstII were also constructed. Silver stain and mass spectrometry analyses confirmed the sequential truncation of sialic acid (ΔcstII), galactose (ΔgalT), two glucoses (ΔlgtF), and heptose II (ΔwaaF). While the ΔlgtF and ΔwaaF mutants exhibited enhanced biofilm formation and ΔlgtF displayed increased sensitivity to complement killing, no effect for these phenotypes and only modest alterations in CFW reactivity were seen with partial outer core truncations. Deletion of LgtF had no effect on mouse colonization in vivo, or on invasion and intracellular survival in epithelial cells in vitro. In contrast, the ΔwaaF mutant exhibited a significant defect in intracellular survival in vitro. Interestingly, the mutants exhibited stepwise increases in susceptibility to the antimicrobial peptide LL-37, with /waaF and ΔlgtF being more susceptible and ΔgalT and ΔstII being more resistant than wild type. In contrast, all of the mutants were highly susceptible to polymyxin B. This is the first report of C. jejuni susceptibility to LL-37 and of LOS affecting polymyxin B resistance. Each of these appears to be independent of overt effects on outer membrane protein expression, membrane stability, or surface hydrophobicity. Together, our data indicate that the length and specific moieties of the LOS play important roles in C. jejuni biology, and suggest a dynamic interplay of the LOS with other stress resistance factors.
2

Effects of sequential Campylobacter jejuni 81-176 lipooligosaccharide core truncations on stress survival and pathogenesis

Naito, Mizue 11 1900 (has links)
Campylobacterjejuni, a Gram-negative enteric pathogen, is the leading cause of bacterial gastroenteritis in the developed world. A C. jejuni strain 8 1-176 transposon library was used to screen for mutants over-producing a calcofluor white (CFW)-reactive polymer implicated in biofilm formation. This identified two lipooligosaccharide (LOS) core mutants: one defective for a two-domain glycosyltransferase (lgtF), and the other defective in a heptosyltransferase (waaF). To determine if other LOS core mutants displayed a similar phenotype, and to explore other biological outcomes of step-wise LOS truncations on C. jejuni stress resistance and pathogenesis, mutant strains defective for GaiT and CstII were also constructed. Silver stain and mass spectrometry analyses confirmed the sequential truncation of sialic acid (ΔcstII), galactose (ΔgalT), two glucoses (ΔlgtF), and heptose II (ΔwaaF). While the ΔlgtF and ΔwaaF mutants exhibited enhanced biofilm formation and ΔlgtF displayed increased sensitivity to complement killing, no effect for these phenotypes and only modest alterations in CFW reactivity were seen with partial outer core truncations. Deletion of LgtF had no effect on mouse colonization in vivo, or on invasion and intracellular survival in epithelial cells in vitro. In contrast, the ΔwaaF mutant exhibited a significant defect in intracellular survival in vitro. Interestingly, the mutants exhibited stepwise increases in susceptibility to the antimicrobial peptide LL-37, with /waaF and ΔlgtF being more susceptible and ΔgalT and ΔstII being more resistant than wild type. In contrast, all of the mutants were highly susceptible to polymyxin B. This is the first report of C. jejuni susceptibility to LL-37 and of LOS affecting polymyxin B resistance. Each of these appears to be independent of overt effects on outer membrane protein expression, membrane stability, or surface hydrophobicity. Together, our data indicate that the length and specific moieties of the LOS play important roles in C. jejuni biology, and suggest a dynamic interplay of the LOS with other stress resistance factors.
3

Effects of sequential Campylobacter jejuni 81-176 lipooligosaccharide core truncations on stress survival and pathogenesis

Naito, Mizue 11 1900 (has links)
Campylobacterjejuni, a Gram-negative enteric pathogen, is the leading cause of bacterial gastroenteritis in the developed world. A C. jejuni strain 8 1-176 transposon library was used to screen for mutants over-producing a calcofluor white (CFW)-reactive polymer implicated in biofilm formation. This identified two lipooligosaccharide (LOS) core mutants: one defective for a two-domain glycosyltransferase (lgtF), and the other defective in a heptosyltransferase (waaF). To determine if other LOS core mutants displayed a similar phenotype, and to explore other biological outcomes of step-wise LOS truncations on C. jejuni stress resistance and pathogenesis, mutant strains defective for GaiT and CstII were also constructed. Silver stain and mass spectrometry analyses confirmed the sequential truncation of sialic acid (ΔcstII), galactose (ΔgalT), two glucoses (ΔlgtF), and heptose II (ΔwaaF). While the ΔlgtF and ΔwaaF mutants exhibited enhanced biofilm formation and ΔlgtF displayed increased sensitivity to complement killing, no effect for these phenotypes and only modest alterations in CFW reactivity were seen with partial outer core truncations. Deletion of LgtF had no effect on mouse colonization in vivo, or on invasion and intracellular survival in epithelial cells in vitro. In contrast, the ΔwaaF mutant exhibited a significant defect in intracellular survival in vitro. Interestingly, the mutants exhibited stepwise increases in susceptibility to the antimicrobial peptide LL-37, with /waaF and ΔlgtF being more susceptible and ΔgalT and ΔstII being more resistant than wild type. In contrast, all of the mutants were highly susceptible to polymyxin B. This is the first report of C. jejuni susceptibility to LL-37 and of LOS affecting polymyxin B resistance. Each of these appears to be independent of overt effects on outer membrane protein expression, membrane stability, or surface hydrophobicity. Together, our data indicate that the length and specific moieties of the LOS play important roles in C. jejuni biology, and suggest a dynamic interplay of the LOS with other stress resistance factors. / Science, Faculty of / Microbiology and Immunology, Department of / Graduate
4

Warfighter Adrenal Response to Extreme Military Stress

Szivak, Tunde K. 29 December 2016 (has links)
No description available.
5

Genomic Analysis of Nematode-Environment Interaction

Adhikari, Bishwo 15 July 2010 (has links) (PDF)
The natural environments of organisms present a multitude of biotic and abiotic challenges that require both short-term ecological and long-term evolutionary responses. Though most environmental response studies have focused on effects at the ecosystem, community and organismal levels, the ultimate controls of these responses are located in the genome of the organism. Soil nematodes are highly responsive to, and display a wide variety of responses to changing environmental conditions, making them ideal models for the study of organismal interactions with their environment. In an attempt to examine responses to environmental stress (desiccation and freezing), genomic level analyses of gene expression during anhydrobiosis of the Antarctic nematode Plectus murrayi was undertaken. An EST library representative of the desiccation induced transcripts was established and the transcripts differentially expressed during desiccation stress were identified. The expressed genome of P. murrayi showed that desiccation survival in nematodes involves differential expression of a suite of genes from diverse functional areas, and constitutive expression of a number of stress related genes. My study also revealed that exposure to slow desiccation and freezing plays an important role in the transcription of stress related genes, improves desiccation and freezing survival of nematodes. Deterioration of traits essential for biological control has been recognized in diverse biological control agents including insect pathogenic nematodes. I studied the genetic mechanisms behind such deterioration using expression profiling. My results showed that trait deterioration of insect pathogenic nematode induces substantial overall changes in the nematode transcriptome and exhibits a general pattern of metabolic shift causing massive changes in metabolic and other processes. Finally, through field observations and molecular laboratory experiments the validity of the growth rate hypothesis in natural populations of Antarctic nematodes was tested. My results indicated that elemental stoichiometry influences evolutionary adaptations in gene expression and genome evolution. My study, in addition to providing immediate insight into the mechanisms by which multicellular animals respond to their environment, is transformative in its potential to inform other fundamental ecological and evolutionary questions, such as the evolution of life-history patterns and the relationship between community structure and ecological function in ecosystems.

Page generated in 0.059 seconds