• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Product Line Optimization of Force Transducers : Replacing R87 with R03 in Strip Tension Systems

Esmailzadeh Anari, Pedram January 2023 (has links)
The aim of this thesis is to investigate the potential of replacing the material 1.4418 (R87), currently used in ABB's PFCL201 load cells, with the material 1.402 (R03). Both materials possess desirable properties, including high strength, toughness and magnetoelastic characteristics, making them suitable for force transducer applications in strip tension systems. However, the scarcity and high cost of R87 necessitate exploring the feasibility of utilizing the more affordable and easily obtainable R03. The research methodology involved a combination of mechanical and thermal simulations, as well as the evaluation of prototype measurements made from R03. Mechanical simulations were conducted to identify a new load cell geometry that would facilitate the use of R03, while thermal simulations focused on comparing the thermal properties of R03 with real-life measurements. Furthermore, prototypes made from R03 were tested to investigate the transducer characteristics of the material. Lastly, a cost analysis was performed, comparing the manufacturing costs associated with R87 and R03. The study yielded promising results. R03 improves the manufacturing process and significantly reduces the costs related to it. A new load cell geometry was identified, which could be manufactured using existing resources at the factory. Thermal simulations demonstrated improvements in the thermal properties when employing R03. However, measurements of the PFCL201-20 kN load cell made from R03, indicated that to maintain the same accuracy class and commutation angle as the current R87 load cells, the nominal load would need to be adjusted to 12 kN instead of 20 kN. Nonetheless, with the identified geometric modifications, R03 load cells could still be utilized as 20 kN load cells. Alternatively, by changing either the accuracy class or commutation angle. This research provides valuable insights into the possibility of replacing the expensive and scarce R87 material with the more cost-effective and readily available R03 in ABB's PFCL201 load cells. The findings offer a foundation for future studies and potential business decisions regarding material selection and load cell design optimization.

Page generated in 0.0876 seconds