• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 259
  • 47
  • 13
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 400
  • 400
  • 400
  • 83
  • 83
  • 75
  • 48
  • 43
  • 43
  • 43
  • 39
  • 38
  • 34
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Crack detection using a passive wireless strain sensor

Lantz, Gabriel Antoine 29 August 2011 (has links)
Nearly one third of the 604,426 bridges in the United-States are either structurally deficient or functionally obsolete. Monitoring these bridges is essential to avoid catastrophic accidents. In steel bridges fatigue induced crack/rupture, which is one of the most common modes of failure, can be avoided if the crack is detected at the early stages of its formation. Cracks usually originate at stress concentration areas but their precise origin is random. Such strain concentration can be monitored with traditional strain gages, but their installation requires lengthy wires and equipment, which are expensive and labor intensive. Therefore wireless sensors are being developed to cope with these problems. In this work, a passive wireless strain sensor based on RFID technology is described. The sensor is a patch antenna that resonates at a certain frequency, which shifts in presence of strain. The relation between the resonance frequency and the strain is approximately linear. The slope of the relation is called sensitivity. The behavior of the sensor's sensitivity is studied using experimental work and simulations that couple electromagnetism and mechanics. The sensitivity measured in experiments and in simulations in presence of uniform strain is different. This difference is lower for the sensitivity in presence of a crack, probably due to a parameter variation that is currently not accurately modeled in the simulations.
262

Computer analysis of imperfect axially loaded structures

Petty, Soranee Holasuit 03 June 2011 (has links)
Stability of a simple elastic structure, namely a Chilver structure, is to be investigated. The study will concentrate on the effect of structural imperfections on the critical load of the structure. A computer program will be developed to search for the critical direction of the imperfection,i.e., the direction in which the load carrying capacity of the structure is a minimum for any given amplitude of the imperfection. This study will help structural engineers understand the behavior of imperfect structures.Ball State UniversityMuncie, IN 47306
263

A methodology to Develop an Integrated Engineering System to Estimate Quantities for Bridge Repairs at the Pre-Design Stage

Thaesler-Garibaldi, Maria P. 21 April 2005 (has links)
A Damage Assessment Model, Construction Process Model and Parametric Quantity Model were developed with the purpose of capturing the engineering knowledge involved in the estimating process of bridge repair construction projects. The Damage Assessment Model was used to create a sample database in which detailed inspection data was stored in a format compatible with the existing Pontis?tabase. Detailed inspection data, which provided quantitative values for the different damage types observed in bridges, could be retrieved from the sample database so that data could be used as either input parameters in the knowledge rules that triggered the selection of construction tasks in the Construction Process Model, or data could be used as variables in the equations used to estimate quantities in the Parametric Quantity Model. The Construction Process Model was used to incorporate the logic behind the construction process for different repair methods. The Construction Process Model was composed of seven repair matrices that defined specific repair methods for each Pontis?idge element. Construction tasks were grouped in construction modules that were modeled as flowcharts. Each construction module flowchart was composed of construction tasks arranged in sequential order and decision points that triggered the selection of construction tasks based on input parameters and knowledge rules. Input parameters were provided by the user, retrieved from the model or pre-defined in the model by expert knowledge. The construction modules developed involved construction tasks related to the repair of concrete bridge piles that were damaged due to reinforcement corrosion and related concrete deterioration. Data describing the construction tasks that were considered in the construction module flowcharts were modeled using the entity-relationship model and were stored in the sample database described previously. The Parametric Quantity Model combined data generated by the Damage Assessment Model and the Construction Process Model with additional expert knowledge and parameters into equations that were used to estimate quantities. The author investigated the use of neural networks as a tool to predict actual damage in bridge piles, conducted a preliminary survey to define labor productivity factors and collected data to define the duration of construction activities related to bridge repair.
264

A Substructure Based Parallel Solution Framework for Solving Linear Structural Systems with Multiple Loading Conditions

Kurc, Ozgur 21 April 2005 (has links)
This study presented a substructure based parallel linear solution framework for the static analysis of linear structural engineering problems having multiple loading conditions. The framework was composed of two separate programs designed to work on PC Clusters having the Windows operating system. The first program was responsible for creating the optimum substructures for the parallel solution and first partitioned the structure in such a way that the number of substructures was equal to the number of processors. Then, the estimated condensation time imbalance of the initial substructures was adjusted by iteratively transferring nodes from the substructures with slower estimated condensation times to the substructures with faster estimated condensation times. Once the final substructures were created, the second program started the solution. Each processor assembled its substructures stiffness matrix and condensed it to the interface with other substructures. The interface problem was solved by a parallel variable band solver. After computing the interface unknowns, each processor calculated the internal displacements and element stresses or forces. Examples which illustrate the applicability and efficiency of this approach were also presented. In these examples, the number of processors was varied from one to twelve to demonstrate the performance of the overall solution framework.
265

Mevcut betonarme binaların deprem güvenliğini etkileyen faktörlerin incelenmesi /

Aycı, Ömer. Demir, Fuat. Korkmaz, Kasım Armağan. January 2008 (has links) (PDF)
Tez (Yüksek Lisans) - Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, 2008. / Kaynakça var.
266

Numerical analysis of tunnelling in stiff clay

Addenbrooke, Trevor Ian. January 1996 (has links)
Thesis (doctoral)--University of London, 1996. / BLDSC reference no.: DX209604. Includes bibliographical references.
267

Computer method for the generation of the geometry of tensegrity structures

Charalambides, Jason Evelthon 28 August 2008 (has links)
Not available / text
268

Implementation of second-order finite elements in the GIFTS structural analysis program

Hunten, Keith Atherton January 1979 (has links)
No description available.
269

An interval indicator for the Runge-Kutta scheme

Shirley, George Edward, 1943- January 1968 (has links)
No description available.
270

A general hand method of analysis for tall building structures subject to lateral loads /

Hoenderkamp, Hans J. C. D. January 1983 (has links)
A generalized approximate hand method of analysis is presented for determining the lateral deflections and internal forces in complex multi-storey structures subject to lateral loading. The buildings may include symmetric or asymmetric combinations of coupled walls, rigid frames, shear walls, wall-frames, rigid frames with central walls, frames with single and multi-storey bracing systems as well as cores that are either open or partially closed by floor beams. The deformations taken into account include bending, axial, shear and torsion. / The analysis is based on the continuous medium technique in which the bents in the structure are replaced by idealized assemblies representing their characteristic modes of behaviour. The proposed method is restricted to structures with uniform geometry up the height and linear elastic behaviour of the structural members. / Design equations are presented for the conventional lateral loading cases: a concentrated load at the top of the structure, a uniformly distributed load, and a triangularly distributed load with maximum intensity at the top. The simplicity of this method allows the sway of a structure, the maximum storey sway and its location in the height of the structure to be determined graphically. This procedure enables not only a rapid estimate of the deflections in the structure but together with an assessment of the internal forces it provides a design office method of comparing the efficiencies of different structural alternatives in the preliminary design of tall building structures.

Page generated in 0.1124 seconds