• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental and Computational Investigation of a Self-Centering Beam Moment Frame (SCB-MF)

Maurya, Abhilasha 27 April 2016 (has links)
In the past two decades, there have been significant advances in the development of self-centering (SC) seismic force resisting systems. However, examples of SC systems used in practice are limited due to unusual field construction practices, high initial cost premiums and deformation incompatibility with the gravity framing. A self-centering beam moment frame (SCB-MF) has been developed that virtually eliminates residual drifts and concentrates the majority of structural damage in replaceable fuse elements. The SCB consists of a I-shaped steel beam augmented with a restoring force mechanism attached to the bottom flange and can be shop fabricated. Additionally, the SCB has been designed to eliminate the deformation incompatibility associated with the self-centering mechanism. The SCB-MF system is investigated and developed through analytical, computational, and experimental means. The first phase of the work involves the development of the SCB concepts and the experimental program on five two-thirds scale SCB specimens. Key parameters were varied to investigate their effect on global system hysteretic response and their effect on system components. These large-scale experiments validated the performance of the system, allowed the investigation of detailing and construction methods, provided information on the behavior of the individual components of the system. The experimental results also provided data to confirm and calibrate computational models that can capable of capturing the salient features of the SCB-MF response on global and component level. As a part of the second phase, a set of archetype buildings was designed using the self-centering beam moment frame (SCB-MF) to conduct a non-linear response history study. The study was conducted on a set of 9 archetype buildings. Four, twelve and twenty story frames, each with three levels of self-centering ratios representing partial and fully self-centering systems, were subjected to 44 ground motions scaled to two hazard levels. This study evaluated the performance of SCB-MFs in multi-story structures and investigated the probabilities of reaching limit states for earthquake events with varying recurrence period. The experimental and computational studies described in this dissertation demonstrate that the SCB-MF for steel-framed buildings can satisfy the performance goals of virtually eliminating residual drift and concentrating structural damage in replaceable fuses even during large earthquakes. / Ph. D.
2

Evaluating Shear links for Use in Seismic Structural Fuses

Farzampour, Alireza 28 January 2019 (has links)
Advances in structural systems that resist extreme loading such as earthquake forces are important in their ability to reduce damages, improve performance, increase resilience, and improve the reliability of structures. Buckling resistant shear panels can be used to form new structural systems, which have been shown in preliminary analysis to have improved hysteretic behavior including increased stiffness and energy dissipating ability. Both of these characteristics lead to reduced drifts during earthquakes, which in turn leads to a reduction of drift related structural and nonstructural damage. Shear links are being used for seismic energy dissipation in some structures. A promising type of fuse implemented in structures for seismic energy dissipation, and seismic load resistance consists of a steel plate with cutouts leaving various shaped shear links. During a severe earthquake, inelastic deformation and damage would be concentrated in the shear links that are part of replaceable structural fuses, while the other elements of the building remain in the elastic state. In this study, by identifying the issues associated with general fuses previously used in structures, the behavior of the links is investigated and procedures to improve the behavior of the links are explained. In this study, a promising type of hysteretic damper used for seismic energy dissipation of a steel plate with cutouts leaving butterfly-shaped links subjected to shear deformations. These links have been proposed more recently to better align bending capacity with the shape of the moment diagram by using a linearly varying width between larger ends and a smaller middle section. Butterfly-shaped links have been shown in previous tests to be capable of substantial ductility and energy dissipation, but can also be prone to lateral torsional buckling. The mathematical investigations are conducted to predict, explain and analyze the butterfly-shaped shear links behavior for use in seismic structural fuses. The ductile and brittle limit states identified based on the previous studies, are mathematically explained and prediction equations are proposed accordingly. Design methodologies are subsequently conceptualized for structural shear links to address shear yielding, flexural yielding and buckling limit states for a typical link subjected to shear loading to promote ductile deformation modes. The buckling resistant design of the links is described with the aid of differential equations governing the links' buckling behavior. The differential equations solution procedures are developed for a useful range of link geometries and the statistical analysis is conducted to propose an equation for critical buckling moment. Computational studies on the fuses are conducted with finite element analysis software. The computational modeling methodology is initially verified with laboratory tests. Two parametric computational studies were completed on butterfly-shaped links to study the effect of varying geometries on the shear yielding and flexural yielding limit states as well as the buckling behavior of the different butterfly-shaped link geometries. It is shown that the proposed critical moment for brittle limit state has 98% accuracy, while the prediction equations for ductile limit states have more than 97% accuracy as well. Strategies for controlling lateral torsional buckling in butterfly links are recommended and are validated through comparison with finite element models. The backbone behavior of the seismic butterfly-shaped link is formulized and compared with computational models. In the second parametric study, the geometrical properties effects on a set of output parameters are investigated for a 112 computational models considering initial imperfection, and it is indicated that the narrower mid-width would reach to their limit states in lower displacement as compared to wider mid-width ones. The work culminates in a system-level validation of the proposed structural fuses with the design and analysis of shear link structural fuses for application in three buildings with different seismic force resisting systems. Six options for shear link geometry are designed for each building application using the design methodologies and predictive equations developed in this work and as guided by the results of the parametric studies. Subsequently, the results obtained for each group is compared to the conventional systems. The effect of implementation of the seismic links in multi-story structures is investigated by analyzing two prototype structures, with butterfly-shaped links and simple conventional beam. The results of the nonlinear response history analysis are summarized for 44 ground motions under Maximum Considered Event (MCE) and Design Basic Earthquake (DBE) ground motion hazard levels. It is shown that implementation of the butterfly-shaped links will lead to higher dissipated energy compared to conventional Eccentrically Braced Frame (EBF) systems. It is concluded that implementation of the seismic shear links significantly improves the energy dissipation capability of the systems compared to conventional systems, while the stiffness and strength are close in these two systems. / Ph. D. / Structural fuses are replaceable elements of a structure that are designed to yield and protect the surrounding members from damages, and then be accessible and replaceable after a major event. Several studies have indicated that steel plates with cutouts would have advantages for use in structural fuses. Having cutouts in a steel plate would make different shapes inside of the plate, which are called structural links. To have the same yielding condition all over the links, it is tried to better align the capacity of the links with the shape of the demand diagram caused by loading, which would be leading to the efficient implementation of the steel. In general, links are implemented to substantially increase the energy dissipation capacity of a structure and significantly reduce the energy dissipation demand on the framing members of a structure. For these purposes, various shapes have been proposed in this research study. The main feature of a replaceable link system is that the inelasticity is concentrated at the steel link while the beams and columns remain almost elastic. This study investigated the general behavior of the fuses, the applicability of them for space-constrained applications, the flexure, shear and buckling limit states affecting the behavior of the links. The computational analysis methodologies to model the links are explained and confirmed with the behavior of the different experiment tests as well as the proposed brittle limit state prediction equations. Subsequently, the two parametric studies are done to investigate the effect of geometrical properties on the links output results and establish prediction equations. The results from the analytical and computational studies for the seismic links are incorporated for seismic investigation of multi-story buildings. The results of seismic analysis of the two buildings are summarized for 44 ground motions.
3

Topology Optimization of Steel Shear Fuses to Resist Buckling

Avecillas, Javier Andres 01 February 2019 (has links)
Shear-acting structural fuses are steel plates with cutouts subjected to in-plane lateral displacements during extreme loading events such as earthquakes, that dissipate energy through localized shear or flexural yielding mechanisms. Although previous studies have reported that fuses with specific geometry can develop a stable hysteretic behavior, their small thickness makes them prone to buckling, reducing strength and energy dissipation capacity. In this work, topology optimization using genetic algorithms is performed to find optimized shapes for structural fuses with a square domain and constant thickness. The objective function uses the fuse's shear buckling load VB obtained from a 3D linear buckling analysis, and shear yield load VY obtained from a material nonlinear, but geometrically linear 2D plane-stress analysis. The two analyses are shown to be computationally efficient and viable for use in the optimization routine. The variations VY/VB=0.1,0.2,0.3 are investigated considering a target volume equal to 30%, 40% and 50% the fuse's original volume. A new set of optimized topologies are obtained, interpreted into smooth shapes, and evaluated using finite elements analyses with models subjected to monotonic and cyclic displacements histories. It was found that the drift angle when out-of-plane buckling occurs can be controlled using the VY/VB ratio, with optimized topologies buckling at drift angles (when subjected to a cyclic displacement protocol) as large as 9% as compared to 6% for previously studied fuses. / Master of Science / Shear-acting structural fuses are steel plates with cutouts that dissipate energy during extreme loading events such as earthquakes. These structural fuses have a fixed edge and an opposing edge subjected to in-plane lateral displacements. Although previous studies have reported that fuses with specific geometry have a good cyclic performance, their small thickness makes them prone to bend or buckle, reducing strength and energy dissipation capacity. Considering a structural fuse with a square domain and constant thickness, a mathematical method called topology optimization is implemented to optimize the distribution of material with the goal of controlling the amount of yielding in the structural fuse before it buckles. The optimization routine uses the fuse’s shear buckling capacity (VB) and shear yield strength (VY ) obtained from relative simple and computationally inexpensive procedures that are also valid to characterize the potential for buckling in a structural fuse. The variations VY /VB = 0.1, 0.2, 0.3 are investigated considering a target volume equal to 30%, 40% and 50% the fuse’s original volume. A set of optimized topologies are interpreted into smooth shapes and evaluated using finite elements analyses. It was found that the drift angle when out-of-plane buckling occurs can be controlled by using the VY /VB ratio, with optimized topologies buckling at drift angles (when subjected to a cyclic displacement protocol) as large as 9% as compared to 6% for previously studied fuses.

Page generated in 0.0328 seconds