Spelling suggestions: "subject:"ctructural atemsystem dentification"" "subject:"ctructural atemsystem didentification""
1 |
Dynamic State Estimation Techniques For Identification Of Parameters Of Finite Element Structural ModelsAhmed, Nasrellah Hassan 04 1900 (has links)
The thesis outlines the development and application of a few novel dynamic state estimation based methods for estimation of parameters of vibrating engineering structures. The study investigates strategies for data fusion from multiple tests of possibly different types and different sensor quantities through the introduction of a common pseudo-time parameter. These strategies have been developed within the framework of Kalman and particle filtering techniques. The proposed methods are applied to a suite of problems that includes laboratory and field studies with a primary focus on finite element model updating of bridge structures and vehicle structure interaction problems. The study also describes how finite element models residing in commercially available softwares can be made to communicate with database of measurements via a particle filtering algorithm developed on the Matlab platform.
The thesis is divided into six chapters and an appendix. A review of literature on problems of structural system identification with emphasis on methods on dynamic state estimation techniques is presented in Chapter 1. The problem of system parameter idenfification when measurements originate from multiple tests and multiple sensors is considered in Chapter 2. and solution based on Neumann expansion of the structural static/dynamic stiffness matrix and Kalman filtering is proposed to tackle this problem. The question of decoupling the problem of parameter estimation from state estimation is also discussed. The avoidance of linearization of the stiffness matrix and solution of the parameter problems by using Monte Carlo filters is examined in Chapter 3. This also enables treatment of nonlinear structural mechanics problems. The proposed method is assessed using synthetic and laboratory measurement data. The problem of interfacing structural models residing in professional finite element analysis software with measured data via particle filtering algorithm developed on Matlab platform is considered in Chapter 4. Illustrative examples now cover laboratory studies on a beam structure and also filed studies on an existing multi-span masonry railway arch bridge. Identification of parameters of systems with strong nonlinearities, such, as a rectangular rubber sheet with a concentric hole, is also investigated. Studies on parameter identification in beam moving oscillator problem are reported in Chapter 5. The efficacy of particle filtering strategy in identifying parameters of this class of time varying system is demonstrated. A resume of contributions made and a few suggestions for further research are provided in Chapter 6. The appendix contains details of development of interfaces among finite element software(NISA), data base of measurements and particle filtering algorithm (developed on Matlab platform).
|
2 |
Dynamic fuzzy wavelet neural network for system identification, damage detection and active control of highrise buildingsJiang, Xiaomo 09 March 2005 (has links)
No description available.
|
3 |
Novel Sub-Optimal And Particle Filtering Strategies For Identification Of Nonlinear Structural Dynamical SystemsGhosh, Shuvajyoti 01 1900 (has links)
Development of dynamic state estimation techniques and their applications in problems of identification in structural engineering have been taken up. The thrust of the study has been the identification of structural systems that exhibit nonlinear behavior, mainly in the form of constitutive and geometric nonlinearities. Methods encompassing both linearization based strategies and those involving nonlinear filtering have been explored.
The applications of derivative-free locally transversal linearization (LTL) and multi-step transversal linearization (MTrL) schemes for developing newer forms of the extended Kalman filter (EKF) algorithm have been explored. Apart from the inherent advantages of these methods in avoiding gradient calculations, the study also demonstrates their superior numerical accuracy and considerably less sensitivity to the choice of step sizes. The range of numerical illustrations covers SDOF as well as MDOF oscillators with time-invariant parameters and those with discontinuous temporal variations.
A new form of the sequential importance sampling (SIS) filter is developed which explores the scope of the existing SIS filters to cover nonlinear measurement equations and more general forms of noise involving multiplicative and (or) Gaussian/ non-Gaussian noises. The formulation of this method involves Ito-Taylor’s expansions of the nonlinear functions in the measurement equation and the development of the ideal ispdf while accounting for the non-Gaussian terms appearing in the governing equation. Numerical illustrations on parameter identification of a few nonlinear oscillators and a geometrically nonlinear Euler–Bernoulli beam reveal a remarkably improved performance of the proposed methods over one of the best known algorithms, i.e. the unscented particle filter.
The study demonstrates the applicability of diverse range of mathematical tools including Magnus’ functional expansions, theory of SDE-s, Ito-Taylor’s expansions and simulation and characterization of the non-Gaussian random variables to the problem of nonlinear structural system identification.
|
4 |
Novel Strategies For Real-Time Substructuring, Identification And Control Of Nonlinear Structural Dynamical SystemsSajeeb, R 01 1900 (has links)
The advances in computational and experimental modeling in the area of structural mechanics have stimulated research in a class of hybrid problems that require both of these modeling capabilities to be combined to achieve certain objectives. Real-time substructure (RTS) testing, structural system identification (SSI) and active control techniques fall in the category of hybrid problems that need efficient tools in both computational and experimental phases for their successful implementation. RTS is a hybrid testing method, which aims to overcome the scaling problems associated with the conventional dynamic testing methods (such as shake table test, effective force test and pseudo dynamic test) by testing the critical part of the structure experimentally with minimum compromise on spatio-temporal scaling, while modeling the remaining part numerically. The problem of SSI constitutes an important component within the broader framework of problems of structural health monitoring where, based on the in-situ measurements on the loading and a subset of critical responses of the structure, the system parameters are estimated with a view to detecting damage/degradation. Active control techniques are employed to maintain the functionality of important structures, especially under extreme dynamic loading. The work reported in the present thesis contributes to the areas of RTS, SSI and active control of nonlinear systems, the main focus being the computational aspects, i.e., in developing numerical strategies to address some of the unsolved issues, although limited efforts have also been made to undertake laboratory experimental investigations in the area of nonlinear SSI.
The thesis is organized into seven chapters and five appendices. The first chapter contains an overview of the state of the art techniques in dynamic testing, SSI and structural control. The topics covered include effective force test, pseudo dynamic test, RTS test, time and frequency domain methods of nonlinear system identification, dynamic state estimation techniques with emphasis on particle filters, Rao-Blackwellization, structural control methods, control algorithms and active control of nonlinear systems. The review identifies a set of open problems that are subsequently addressed, to an extent, in the thesis.
Chapter 2 focuses on the development of a time domain coupling technique, involving combined computational and experimental modeling, for vibration analysis of structures built-up of linear/nonlinear substructures. The numerical and experimental substructures are allowed to interact in real-time. The equation of motion of the numerical substructure is integrated using a step-by-step procedure that is formulated in the state space. For systems with nonlinear substructures, a multi-step transversal linearization method is used to integrate the equations of motion; and, a multi-step extrapolation scheme, based on the reproducing kernel particle method, is employed to handle the time delays that arise while accounting for the interaction between the substructures. Numerical illustrations on a few low dimensional vibrating structures are presented and these examples are fashioned after problems of seismic qualification testing of engineering structures using RTS testing techniques.
The concept of substructuring is extended in Chapter 3 for implementing Rao-Blackwellization, a technique of combining particle filters with analytical computation through Kalman filters, for state and parameter estimations of a class of nonlinear dynamical systems with additive Gaussian process/observation noises. The strategy is based on decomposing the system to be estimated into mutually coupled linear and nonlinear substructures and then putting in place a rational framework to account for coupling between the substructures. While particle filters are applied to the nonlinear substructures, estimation of linear substructures proceeds using a bank of Kalman filters. Numerical illustrations for state/parameter estimations of a few linear and nonlinear oscillators with noise in both the process and measurements are provided to demonstrate the potential of the Rao-Blackwellized particle filter (RBPF) with substructuring.
In Chapter 4, the concept of Rao-Blackwellization is extended to handle more general nonlinear systems, using two different schemes of linearization. A semi-analytical filter and a conditionally linearized filter, within the framework of Monte Carlo simulations, are proposed for state and parameter estimations of nonlinear dynamical systems with additively Gaussian process/observation noises. The first filter uses a local linearization of the nonlinear drift fields in the process/observation equations based on explicit Ito-Taylor expansions to transform the given nonlinear system into a family of locally linearized systems. Using the most recent observation, conditionally Gaussian posterior density functions of the linearized systems are analytically obtained through the Kalman filter. In the second filter, the marginalized posterior distribution of an appropriately chosen subset of the state vector is obtained using a particle filter. Samples of these marginalized states are then used to construct a family of conditionally linearized system of equations to obtain the posterior distribution of the states using a bank of Kalman filters. The potential of the proposed filters in state/parameter estimations is demonstrated through numerical illustrations on a few nonlinear oscillators.
The problem of active control of nonlinear structural dynamical systems, in the presence of both process and measurement noises, is considered in Chapter 5. The focus of the study is on the exploitability of particle filters for state estimation in feedback control algorithms for nonlinear structures, when a limited number of noisy output measurements are available. The control design is done using the state dependent Riccati equation (SDRE) method. The Bayesian bootstrap filter and another based on sequential importance sampling are employed for state estimation. Numerical illustrations are provided for a few typically nonlinear oscillators of interest in structural engineering.
The experimental validation of the RBPF using substructuring (developed in Chapter 3) and the conditionally linearized Monte Carlo filter (developed in Chapter 4), for parameter estimation, is reported in Chapter 6. Measured data available through laboratory experiments on simple building frame models subjected to harmonic base motions is processed using the proposed algorithms to identify the unknown parameters of the model.
A brief summary of the contributions made in this thesis, together with a few suggestions for future research, are presented in Chapter 7.
Appendix A provides an account of the multi-step transversal linearization method. The derivation of the reproducing kernel shape functions are presented in Appendix B. Appendix C provides the details of the stochastic Taylor expansion and derivation of the covariance structure of Gaussian MSI-s. The performance of a particle filtering algorithm (bootstrap filter) and Kalman filter in the state estimation of a linear system is provided in Appendix D and Appendix E contains the theoretical details of the Rao-Blackwellized particle filter.
|
Page generated in 0.1113 seconds