• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 428
  • 173
  • 88
  • 64
  • 38
  • 10
  • 8
  • 8
  • 7
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 991
  • 991
  • 503
  • 165
  • 153
  • 149
  • 148
  • 126
  • 123
  • 100
  • 77
  • 74
  • 71
  • 65
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

成長ひずみ法によるソリッド体の形状最適化(体積、応力制約のためのPID制御の導入)

下田, 昌利, Shimoda, Masatoshi, 畔上, 秀幸, Azegami, Hideyuki, 桜井, 俊明, Sakurai, Toshiaki 03 1900 (has links)
No description available.
372

均質化理論に基づく位相最適化法によるホモロガス変形問題の数値解法

井原, 久, Ihara, Hisashi, 下田, 昌利, Shimoda, Masatoshi, 畔上, 秀幸, Azegami, Hideyuki, 桜井, 俊明, Sakurai, Toshiaki 02 1900 (has links)
No description available.
373

A methodology to Develop an Integrated Engineering System to Estimate Quantities for Bridge Repairs at the Pre-Design Stage

Thaesler-Garibaldi, Maria P. 21 April 2005 (has links)
A Damage Assessment Model, Construction Process Model and Parametric Quantity Model were developed with the purpose of capturing the engineering knowledge involved in the estimating process of bridge repair construction projects. The Damage Assessment Model was used to create a sample database in which detailed inspection data was stored in a format compatible with the existing Pontis?tabase. Detailed inspection data, which provided quantitative values for the different damage types observed in bridges, could be retrieved from the sample database so that data could be used as either input parameters in the knowledge rules that triggered the selection of construction tasks in the Construction Process Model, or data could be used as variables in the equations used to estimate quantities in the Parametric Quantity Model. The Construction Process Model was used to incorporate the logic behind the construction process for different repair methods. The Construction Process Model was composed of seven repair matrices that defined specific repair methods for each Pontis?idge element. Construction tasks were grouped in construction modules that were modeled as flowcharts. Each construction module flowchart was composed of construction tasks arranged in sequential order and decision points that triggered the selection of construction tasks based on input parameters and knowledge rules. Input parameters were provided by the user, retrieved from the model or pre-defined in the model by expert knowledge. The construction modules developed involved construction tasks related to the repair of concrete bridge piles that were damaged due to reinforcement corrosion and related concrete deterioration. Data describing the construction tasks that were considered in the construction module flowcharts were modeled using the entity-relationship model and were stored in the sample database described previously. The Parametric Quantity Model combined data generated by the Damage Assessment Model and the Construction Process Model with additional expert knowledge and parameters into equations that were used to estimate quantities. The author investigated the use of neural networks as a tool to predict actual damage in bridge piles, conducted a preliminary survey to define labor productivity factors and collected data to define the duration of construction activities related to bridge repair.
374

A Substructure Based Parallel Solution Framework for Solving Linear Structural Systems with Multiple Loading Conditions

Kurc, Ozgur 21 April 2005 (has links)
This study presented a substructure based parallel linear solution framework for the static analysis of linear structural engineering problems having multiple loading conditions. The framework was composed of two separate programs designed to work on PC Clusters having the Windows operating system. The first program was responsible for creating the optimum substructures for the parallel solution and first partitioned the structure in such a way that the number of substructures was equal to the number of processors. Then, the estimated condensation time imbalance of the initial substructures was adjusted by iteratively transferring nodes from the substructures with slower estimated condensation times to the substructures with faster estimated condensation times. Once the final substructures were created, the second program started the solution. Each processor assembled its substructures stiffness matrix and condensed it to the interface with other substructures. The interface problem was solved by a parallel variable band solver. After computing the interface unknowns, each processor calculated the internal displacements and element stresses or forces. Examples which illustrate the applicability and efficiency of this approach were also presented. In these examples, the number of processors was varied from one to twelve to demonstrate the performance of the overall solution framework.
375

Manufacturing And Structural Analysis Of A Lightweight Sandwich Composite Uav Wing

Turgut, Tahir 01 September 2007 (has links) (PDF)
This thesis work deals with manufacturing a lightweight composite unmanned aerial vehicle (UAV) wing, material characterization of the composites used in the UAV wing, and preliminary structural analysis of the UAV wing. Manufacturing is performed at the composite laboratory founded in the Department of Aerospace Engineering, and with hand lay-up and vacuum bagging method at room temperature the wing is produced. This study encloses the detailed manufacturing process of the UAV wing from the mold manufacturing up to the final wing configuration supported with sketches and pictures. Structural analysis of the composite wing performed in this study is based on the material properties determined by coupon tests and micromechanics approaches. Contrary to the metallic materials, the actual material properties of composites are generally not available in the material handbooks, because the elastic properties of composite materials are dependent on the manufacturing process. In this study, the mechanical properties, i.e. Young&rsquo / s Modulus, are determined utilizing three different methods. Firstly, longitudinal tensile testing of the coupon specimens is performed to obtain the elastic properties. Secondly, mechanics of materials approach is used to determine the elastic properties. Additionally, an approximate method, that can be used in a preliminary study, is employed. The elastic properties determined by the tests and other approaches are compared to each other. One of the aims of this study is to establish an equivalent material model based on test and micromechanics approach, and use the equivalent model in the structural analysis by finite element method. To achieve this, composite structure of the wing is modeled in detail with full composite material descriptions of the surfaces of the wing structure, and comparisons are made with the results obtained by utilizing equivalent elastic constants. The analyses revealed that all three approaches have consistent, and close results / especially in terms of deflections and natural frequencies. Stress values obtained are also comparable as well. For a case study on level flight conditions, spanwise wing loading distribution is obtained using a program of ESDU, and the wing is analyzed with the distributed loading. Reasonable results are obtained, and the results compared with the tip loading case. Another issue dealt in this study is analyzing the front spar of the wing separately. The analysis of the front spar is performed using transformed section method and finite element analysis. In the results, it is found that both methods calculates the deflections very close to each other. Close stress results are found when solid elements are used in the finite element analysis, whereas, the results were deviating when shell elements are used in the analysis.
376

Structural Design, Analysis And Composite Manufacturing Applications For A Tactical Unmanned Air Vehicle

Soysal, Sercan 01 May 2008 (has links) (PDF)
In this study structural design, analysis and composite manufacturing applications for a tactical UAV, which was designed and manufactured in Aerospace Engineering Department of Middle East Technical University (METU), is introduced. In order to make an accurate structural analysis, the material and loading is modeled properly. Computational fluid dynamics (CFD) was used to determine the 3D pressure distribution around the wing and then the nodal forces were exported into the finite element program by means of interpolation from CFD mesh to finite element mesh. Composite materials which are mainly used in METU TUAV are woven fabrics which are wetted with epoxy resin during manufacturing. In order to find the elastic constants of the woven fabric composites, a FORTRAN code is written which utilizes point-wise lamination theory. After the aerodynamic load calculation and material characterization steps, linear static and dynamic analysis of the METU TUAV&rsquo / s wing is performed and approximate torsional divergence speed is calculated based on a simplified approach. Lastly, co-cured composite manufacturing of a multi-cell box structure is explained and a co-cured multi-cell box beam is manufactured.
377

Structural Design And Evaluation Of An Adaptive Camber Wing

Sakarya, Evren 01 February 2010 (has links) (PDF)
This study presents a camber morphing concept as an alternative to existing plain flap or aileron type hinged control surfaces used in wings. Structural aspects of the concept are investigated with static nonlinear finite element analyses by using MSC Nastran. In order to assess the aerodynamic characteristics / CFD based 2D solutions are obtained using ANSYS Fluent. The camber morphing concept is applied to the full scale hingeless control surface and implemented in the adaptive camber wing. Hingeless control surfaces and adaptive camber wing are manufactured and changes made in manufacture stages are incorporated into finite element models. Finite element analyses of the wing are conducted with static and dynamic loading and comparison with experimental dynamic analyses are performed.
378

Design And Analysis Of A Structural Component Of A Heavy Transport Aircraft

Cikrikci, Davut 01 February 2010 (has links) (PDF)
This thesis aims to present the design and analysis of a structural component of a heavy transport aircraft. The designed component is the &ldquo / coupling&ldquo / which is the interface member connecting two frames or two stringers in the fuselage assembly. The &ldquo / frames&rdquo / , which are the circumferential stiffeners, are joined together by the &ldquo / frame couplings&rdquo / . The &ldquo / stringers&rdquo / , which are the longitudinal stiffeners, are joined together by the &ldquo / stringer couplings&rdquo / . At the preliminary design phase / the structural design principles of the frame and the stringer coupling parts are explained / which are based on the company experiences that were gained from previous aircraft projects. Afterwards, conceptual design phase is performed by structural analysis of the components. The structural analysis methods are defined and illustrated by analyzing typical examples of the frame and the stringer coupling parts. Moreover, the critical load case selection process for the structural components is explained and brief information about the load cases that the structural components will be subjected to in their service life are also given in order to have a feeling about flight regime of the aircraft. The applied loads used in structural analysis of the frame coupling and the stringer coupling components are obtained from the global finite element model of the aircraft. The verification process of the part of global finite element model where the developed components are located is also explained in the thesis. Finally, the general conclusions of the thesis are specified and the recommendations for future work are proposed for similar design and analysis efforts.
379

Investigation Of A Damaged Historical Mosque With Finite Element Analysis

Koseoglu, Gulsum Cagil 01 July 2011 (has links) (PDF)
Historic structures form a very important part of our cultural heritage and should be well protected. Therefore, full comprehension of the structural behavior of historic structures is of prior importance. A seriously damaged single domed mosque of 16th century Classical Ottoman Architecture was investigated in this study. Serious damages have been observed at various structural elements including the dome and the structural masonry walls, recently leading the structure&#039 / s closure to service. The main objective of this study is to find out the possible reasons of the damage. The Mosque was constructed on silty-clay soil and the water table has been changed considerably due to the drought in recent years causing soil displacements. The structure is modeled with linear finite element approach. The masonry walls are modeled with homogenized macro shell elements. The change in water table is imposed on the Mosque as displacement at foundation joints. The results of the analyses have been compared with the observed damage and the finite element model has been calibrated according to the observed damage. Some rehabilitation methods have also been proposed. Mini pile application up to firm soil (rock) was recommended to prevent the soil displacement. A steel ring around the damaged dome base was proposed to avoid any further propagation of cracks. Furthermore, the cracks on the masonry walls should also be repaired with a suitable material that is also compatible with the historic texture.
380

A political economy analysis of Taiwan automobile industry

Chang, Cheng-Bong 14 July 2000 (has links)
Many researchers always consider that Taiwan government use industry policy to ¡§protect¡¨ Taiwan's automobile industry development, and the results are Taiwan's automobile industry become dependent of underdevelopment. In the research process I collected many historical data, I use ¡§historical structural analysis approach and find that the government¡¦s industry policies in fact are not always ¡§protect¡¨.

Page generated in 0.0575 seconds