Spelling suggestions: "subject:"ctructural anda vibration physics"" "subject:"ctructural ando vibration physics""
1 |
Wheelset Structural Flexibility and Track Flexibility in Vehicle-Track Dynamic InteractionChaar, Nizar January 2007 (has links)
This thesis investigates the influence of wheelset structural flexibility and track flexibility on the vehicle-track dynamic interaction, mainly in terms of wheel-rail forces up to 200 Hz, using simulations and measurements. The previous knowledge in this field is first reviewed and summarized, then two case studies are selected for investigation. The first case study involves a locomotive running on a tangent track section at a speed of 140 km/h, while the second one deals with a newly designed motor coach running at two adjacent and tangent track sections with different track components and at speeds up to 280 km/h. For the locomotive case study, the wheelset dynamic properties are first investigated through experimental modal analysis (EMA) for a frequency range of 0-500 Hz, assuming free boundary conditions. The EMA results showed relatively low wheelset eigenfrequencies. A three-dimensional finite element (FE) model, which also includes the wheelset gear-box, is then developed and validated against the measurements for frequencies up to 200 Hz with good agreement. The FE results displayed a significant influence of the wheels’ flexibility on the wheelset’s total structural flexibility. In order to assure proper representation of the track flexibility the vertical and lateral dynamic track properties at a sleeper are measured through a special vehicle at standstill, and measured track irregularities are used. In the numerical simulations, the wheelset structural flexibility is introduced using the calculated eigenmodes above while so-called moving track models are used to model the track flexibility. The simulated wheel-rail forces are then validated against measured ones obtained from corresponding on-track measurements. Results from the simulations highlight the importance of proper track flexibility modelling and track data and also show a significant influence of the wheelset structural flexibility on the lateral track forces. For the motor coach case study, the wheelset dynamic properties are determined through numerical modal analysis using a rather simple FE model and a number of eigenmodes are then introduced in the simulations. The vertical and lateral track dynamic properties at selected track sections are measured using the standstill technique but rolling stiffness measurements, where the vertical track flexibility in the frequency range 5-50 Hz is measured continuously along the track, are also included. The track flexibility is introduced through moving track models. Measured track irregularity and vertical track roughness are also considered. Basic numerical simulations, where the calculated track forces are compared to measured ones, are first performed and followed by a set of parametric studies. The results display a significant influence of the track flexibility on vertical wheel-rail forces for frequencies above 80 Hz, with higher forces for the stiffer track (but weaker rails). The effect of wheelset structural flexibility on the lateral force is also confirmed. The parametric studies highlight the importance of track flexibility modelling and show that modifications of the vertical track receptance, motivated by uncertainties in the pertinent measurements, can improve the simulated forces. / QC 20100701
|
2 |
In-plane Compressive Response of Sandwich PanelsLindström, Anders January 2009 (has links)
The high specific bending stiffness of sandwich structures can with advantage be used in vehicles to reduce their weight and thereby potentially also their fuel consumption. However, the structure must not only meet the in-service requirements but also provide sufficient protection of the vehicle passengers in a crash situation. The in-plane compressive response of sandwich panels is investigated in this thesis, with the objective to develop a methodology capable of determining if the structural response is likely to be favourable in an energy absorption perspective. Experiments were conducted to identify possible initial failure and collapse modes. The initial failure modes of sandwich panels compressed quasi-statically in the in-plane direction were identified as global buckling, local buckling (wrinkling) and face sheet fracture. Global buckling promotes continued folding of the structure when compressed beyond failure initiation. Face sheet fracture and wrinkling can promote collapse in the form of unstable debond crack growth, stable end-crushing or ductile in-plane shear collapse. Both the unstable debond crack propagation and the stable end-crushing are related to debond crack propagation, whereas the ductile in-plane shear mode is related to microbuckling of the face sheets. The collapse behaviour of sandwich configurations initially failing due to wrinkling or face sheet fracture was investigated, using a finite element model. The model was used to determine if the panels were likely to collapse in unstable debond propagation or in a more stable end-crushing mode, promoting high energy absorption. The collapse behaviour is mainly governed by the relation between the fracture toughness of the core and the bending stiffness and strength of the face sheets. The model was successfully used to design sandwich panels for different collapse behaviour. The proposed method could therefore be used in the design process of sandwich panels subjected to in-plane compressive loads.During a crash situation the accelerations on passengers must be kept below life threatening levels. The extreme peak loads in the structure must therefore be limited. This can be achieved by different kind of triggering features.Panels with either chamfered face sheets or with grooves on the loaded edges were investigated in this thesis. The peak load was reduced with panels incorporating either of the two triggering features. Another positive effect was that the plateau load following failure initiation was increased by the triggers. This clearly illustrates that triggers can be used to promote favourable response in sandwich panels. Vehicles are harmful to the environment not only during in-serve use, but during their entire life-cycle. By use of renewable materials the impact on the environment can be reduced. The in-plane compressive response of bio-based sandwich panels was therefore investigated. Panels with hemp fibre laminates showed potential for high energy absorption and panels with a balsa wood core behaved particular well. The ductile in-plane shear collapse mode of these panels resulted in the highest energy absorption of all investigated sandwich configurations. / QC 20100728
|
Page generated in 0.1351 seconds