• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimal structural topology design for multiple load cases with stress constraints.

James, Kai. January 2006 (has links)
Thesis (M.A. Sc.)--University of Toronto, 2006. / Source: Masters Abstracts International, Volume: 45-03, page: 1548.
2

Evolutionary Algorithms In Design

Ciftci, Erhan 01 January 2007 (has links) (PDF)
Evolutionary Structural Optimization (ESO) is a relatively new design tool used to improve and optimise the design of structures. In this method, a few elements of an initial design domain of finite elements are iteratively removed. Such a process is carried out repeatedly until an optimum design is achieved, or until a desired given area or volume is reached. In structural design, there is the demand for the development of design tools and methods that includes optimization. This need is the reason behind the development of methods like Evolutionary Structural Optimization (ESO). It is also this demand that this thesis seeks to satisfy. This thesis develops and examines the program named EVO, with the concept of structural optimization in the ESO process. Taking into account the stiffness and stress constraints, EVO allows a realistic and accurate approach to optimising a model in any given environment. Finally, in verifying the ESO algorithm&rsquo / s and EVO program&rsquo / s usefulness to the practical aspect of design, the work presented herein applies the ESO method to case studies. They concern the optimization of 2-D frames, and the optimization of 3-D spatial frames and beams with the prepared program EVO. Comparisons of these optimised models are then made to those that exist in literature.

Page generated in 0.1481 seconds