• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reliability analysis of degrading uncertain structures with applications to fatigue and fracture under random loading

Beck, André T. January 2003 (has links)
School of Engineering Includes bibliographical references (leaves 248-256)
2

Use of block theory in tunnel stability analysis

Choi, Yam-ming, Kelvin., 蔡任明. January 2006 (has links)
published_or_final_version / Applied Geosciences / Master / Master of Science
3

Investigation of induced strain actuator patches implementing modeling techniques and design considerations to reduce critical stress

Walker, John Griffith 04 March 2009 (has links)
One of the major problems with surface-mounted or embedded induced strain actuator (ISA) patches are the considerably high stress gradients introduced at the edges of the actuator patches when an electric field is applied. These excessive stress gradients initiate debonding of the actuators from the substrate, thus affecting the mechanical reliability of the structure. This thesis is begun by investigating existing theoretical models of induced strain actuated structures, and will later use these to compare with the finite element analysis. The finite element analysis is used to explore the stress concentrations located at the edges of the actuators and begins by refining the mesh areas of the same structure focusing in on the ends of the ISA’s. This preliminary analysis is conducted on a structural configuration with a perfectly bonded actuator and proceeds to one with a finite bonding layer. After completion of the mesh refinement investigation several modifications in the design and implementation of the induced strain actuators are examined to reduce the stress concentrations at the edges of the actuators. In the finite element analysis two separate modeling considerations are examined: 1) The actuator is perfectly-bonded to the substrate. 2) A finite adhesive layer is incorporated between the actuator and the substrate. With each modeling consideration several design modifications are considered in this thesis including employing partial electrodes on the induced strain actuator surface regions instead of fully electroded surfaces, examining an actuator with a chamfered end, and using caps to reduce the stress concentrations and possibly increase the performance of the structure by allowing the induced strain actuators to utilize their piezoelectric strain coefficient in the thickness direction, d₃₃. The design modifications and different modeling techniques help to alleviate the critical stresses in the structure while gaining a better understanding of causes them. / Master of Science
4

Experimental Investigation and Numerical Simulation of an Unreinforced Masonry Structure with Flexible Diaphragms

Yi, Tianyi 06 April 2004 (has links)
Unreinforced masonry (URM) construction, which has been widely used in the United States, presents a large threat to life safety and regional economic development because of its poor seismic resistance. In this research, the nonlinear seismic properties of URM structures were investigated via a quasi-static test of a full-scale two-story URM building and associated analytical and numerical studies. The tests of the 24ft. by 24ft. in plan 22ft. high URM building revealed that the damage was characterized by (1) the formation of large discrete cracks in the masonry walls and (2) the rocking and sliding of URM piers. Both of these results were consistent with the predictions based on individual component properties obtained in previous research. However, the tests also revealed significant global behavior phenomena, including flange effects, overturning moment effects, and the formation of different effective piers in a perforated wall. This global behavior greatly affected the response of the URM building tested. In order to understand the nonlinear behavior of the test structure, a series of analytical studies were conducted. First, at the material level, a mechanical key model was proposed to describe the failure of URM assemblages under a biaxial state of stress. Second, at the component level, an effective pier model was developed to illustrate the mixed failure modes of a URM pier and its nonlinear force-deformation relationship. Third, at the structure level, a nonlinear pushover model was built using the mechanical models at the material and component levels to describe the nonlinear properties of a URM building. This nonlinear pushover model and a three-dimensional finite element model were employed to analyze the test structure. Both gave results in good agreement with the test data. Improvements to current provisions for the evaluation of existing masonry structures were proposed.
5

Numerical and Experimental Analysis of Composite Sandwich Links for the LCF System

Stephens, Max Taylor 01 January 2011 (has links)
Shear links are used as fuse elements in lateral load resisting systems to provide ductility and dissipate seismic energy. These links have traditionally been employed in eccentrically braced frames, but have more recently been suggested for use in the innovative linked column frame system (LCF). Current design specifications for shear links require intermediate web stiffeners to provide out-of-plane web stability so ductility requirements can be achieved. This research focused on moving from discrete transverse web stiffening to continuously stiffened webs in built up shear links. Built up links were designed to yield in shear when subjected to severe cyclic loading, however the webs of the links were designed using two metal sheets joined by an elastic core. These composite "sandwich" webs allowed for an increase in web thickness (and inherent flexural rigidity) without increasing the shear strength of the links. Numerical and experimental investigations were conducted to assess the performance of composite sandwich links subjected to severe loading. Numerical results showed improved web behavior in sandwich links in which the core material was assigned an elastic modulus greater than 5000psi. Due to fabrication limitations, experimental specimens were fabricated with a core material elastic modulus of 1000psi. These specimens did not perform as well as unstiffened base case links in terms global hysteretic behavior or ductility.
6

The effects of earthquake excitations on reticulated domes

Uliana, David A. 14 November 2012 (has links)
Comparisons were made on the behavior of two full-sized reticulated domes subjected to uniform static loads only and uniform static loads with earthquake excitations. Space truss elements were used in the dome models. The stiffness matrix of the space truss element allows for the nonlinear strain-displacement behavior and the stress-strain behavior of the material is modeled with a bilinear approximation. The nonlinear solution technique is the Newton-Raphson method while the direct integration technique is the Newmark- Beta method. The joint displacements for the static and the dynamic analyses were compared for both domes along with the axial stresses in all members. The percentage increases in the axial stresses of the dynamic analyses as compared to those of the static analyses were determined. The reticulated domes used in the study were found to bet capable of withstanding the earthquake excitations when subjected to various uniform loads without failure. / Master of Science

Page generated in 0.1222 seconds