Spelling suggestions: "subject:"ctructural walls"" "subject:"1structural walls""
1 |
Seismic Rehabilitation of RC Structural WallsElnady , Mohamed Mohamed Ebrahim January 2008 (has links)
<p>Structural walls in existing buildings designed to pre 1970s codes may have deficient shear reinforcement and lap splice detailing. Lap splices at the bottom of the walls were designed in compression with anchorage length of 24-bar diameter. When the structural wall is subjected to lateral loads during a major seismic event, the lap splice is in the zone of maximum moment and shear and may be subjected to tension. Such design may cause nonductile behaviour and sudden failure of the wall due to shear or bond slip of the lap splice reinforcing bars. The effect of shear and ductility rehabilitation on the behaviour of reinforced concrete structural walls, without lap splice, have shown improvement in the structural wall shear resistance and ductility and hence overall structural ductility and seismic loads resistance. Research on rehabilitation of reinforced concrete (RC) structural walls with both deficient shear reinforcement and lap splice detailing is still needed. </p> <p> The principal objectives of this study were to evaluate the seismic behaviour of non-ductile reinforced concrete structural walls before and after rehabilitation using carbon fibre reinforced polymers (CFRP). These objectives were achieved through experimental and analytical investigations.</p> <p> The experimental phase of this research involved testing large scale models of RC structural walls with deficient shear strength and lap splice detailing to reproduce failure modes observed following major seismic events and to evaluate the rehabilitation schemes. Ten RC structural walls were built and tested under cyclic loading. Three control walls were tested as-built with non-ductile detailing and seven walls were rehabilitated before testing. The purpose of the rehabilitation techniques was to prevent brittle failure in shear or bond slip and to improve the ductility and energy dissipation of RC structural walls.</p> <p> The analytical phase of this study involved evaluation of the inelastic dynamic response of
RC residential building with nonductile structural walls as well as retrofitted walls. An efficient macroscopic model to represent the behaviour of RC structural walls when subjected to pushover, cyclic and dynamic seismic loads was developed. The proposed model was intended to adequately describe the hysteretic behaviour of walls and to be capable of accurately predicting both flexural and shear components of inelastic deformation. The model predictions were compared with the experimental results. The comparisons showed that the developed analytical model predicted the inelastic walls response with a good accuracy. The analytical model was capable to evaluate the nonlinear dynamic behaviour of an existing building under seismic excitation before and after rehabilitation.</p> / Thesis / Doctor of Philosophy (PhD)
|
2 |
Damage mitigation strategies for non-structural infill walls.Tasligedik, Ali Sahin January 2014 (has links)
In most design codes, infill walls are considered as non-structural elements and thus are typically neglected in the design process. The observations made after major earthquakes (Duzce 1999, L’Aquila 2009, Christchurch 2011) have shown that even though infill walls are considered to be non-structural elements, they interact with the structural system during seismic actions. In the case of heavy infill walls (i.e. clay brick infill walls), the whole behaviour of the structure may be affected by this interaction (i.e. local or global structural failures such as soft storey mechanism). In the case of light infill walls (i.e. non-structural drywalls), this may cause significant economical losses. To consider the interaction of the structural system with the ‘non-structural ’infill walls at design stage may not be a practical approach due to the complexity of the infill wall behaviour. Therefore, the purpose of the reported research is to develop innovative technological solutions and design recommendations for low damage non-structural wall systems for seismic actions by making use of alternative approaches.
Light (steel/timber framed drywalls) and heavy (unreinforced clay brick) non-structural infill wall systems were studied by following an experimental/numerical research programme. Quasi-static reverse cyclic tests were carried out by utilizing a specially designed full scale reinforced concrete frame, which can be used as a re-usable bare frame. In this frame, two RC beams and two RC columns were connected by two un-bonded post tensioning bars, emulating a jointed ductile frame system (PRESSS technology). Due to the rocking behaviour at the beam-column joint interfaces, this frame was typically a low damage structural solution, with the post-tensioning guaranteeing a linear elastic behaviour. Therefore, this frame could be repeatedly used in all of the tests carried out by changing only the infill walls within this frame. Due to the linear elastic behaviour of this structural bare frame, it was possible to extract the exact behaviour of the infill walls from the global results. In other words, the only parameter that affected the global results was given by the infill walls.
For the test specimens, the existing practice of construction (as built) for both light and heavy non-structural walls was implemented. In the light of the observations taken during these tests, modified low damage construction practices were proposed and tested. In total, seven tests were carried out:
1) Bare frame , in order to confirm its linear elastic behaviour.
2) As built steel framed drywall specimen FIF1-STFD (Light)
3) As built timber framed drywall specimen FIF2-TBFD (Light)
4) As built unreinforced clay brick infill wall specimen FIF3-UCBI (Heavy)
5) Low damage steel framed drywall specimen MIF1-STFD (Light)
6) Low damage timber framed drywall specimen MIF2-TBFD (Light)
7) Low damage unreinforced clay brick infill wall specimen MIF5-UCBI (Heavy)
The tests of the as built practices showed that both drywalls and unreinforced clay brick infill walls have a low serviceability inter-storey drift limit (0.2-0.3%). Based on the observations, simple modifications and details were proposed for the low damage specimens. The details proved to be working effectively in lowering the damage and increasing the serviceability drift limits. For drywalls, the proposed low damage solutions do not introduce additional cost, material or labour and they are easily applicable in real buildings. For unreinforced clay brick infill walls, a light steel sub-frame system was suggested that divides the infill panel zone into smaller individual panels, which requires additional labour and some cost. However, both systems can be engineered for seismic actions and their behaviour can be controlled by implementing the proposed details. The performance of the developed details were also confirmed by the numerical case study analyses carried out using Ruaumoko 2D on a reinforced concrete building model designed according to the NZ codes/standards. The results have confirmed that the implementation of the proposed low damage solutions is expected to significantly reduce the non-structural infill wall damage throughout a building.
|
3 |
Window opening effects on structural behaviour of historical masonry Fatih MosqueBayraktar, A., Hökelekli, E., Türker, T., Çalik, I., Ashour, Ashraf, Mosallam, A. 16 March 2018 (has links)
Yes / Structural walls of old historical structures are either blind or have openings for functional requirements. It is well known that in and out of plane responses of structural walls are affected by the size, locations, and arrangements of such openings. The purpose of this investigation is to study the window opening effects on static and seismic behaviors of historical masonry old mosques. Fatih Mosque, which was converted from a church, constructed in 914 in Trabzon, Turkey, is selected for this purpose. The mosque is being restored. Structural exterior walls of the mosque were made using stone and mortar materials. When the plaster on the walls was removed during the restoration, 12 window openings were found as blind on the exterior structural walls of the mosque. Within the scope of restoration works, it is aimed to open such blind windows. In order to investigate the effects of the window openings on the structural behavior of the mosque, 3D solid and finite elements models of the mosque with and without window openings are initially developed. The experimental dynamic characteristics such as frequency, damping ratio, and mode shapes of the current situation of the mosque, where some windows openings are blind, are determined using Ambient Vibration Testing. Then, the finite element model of the current situation of the mosque is updated using the experimental dynamic characteristics. The static and seismic time history analyses of the updated finite element model with and without window openings are carried out. Structural behaviors of the mosque with and without window openings are compared considering displacement and stress propagations.
|
4 |
Performance-Based Analysis of a Reinforced Concrete Shear Wall BuildingHagen, Garrett Richard 01 June 2012 (has links)
PERFORMANCE-BASED ANALYSIS OF A REINFORCED CONCRETE SHEAR WALL BUILDING
Garrett Richard Hagen
In this thesis, a special reinforced concrete shear wall building was designed per ASCE 7-05, and then the performance was investigated using the four analysis procedures outlined in ASCE 41-06. The proposed building was planned as a 6-story office building in San Francisco, CA. The structural system consisted of a two-way flat plate and reinforced concrete columns for gravity loads and slender structural walls for seismic loads. The mathematical building models utilized recommendations from ASCE 41-06 and first-principle mechanics. Moment-curvature analysis and fiber cross-section elements were used in developing the computer models for the nonlinear procedures. The results for the analysis procedures showed that the building met the Basic Safety Objective as defined in ASCE 41-06. The performance levels for the nonlinear procedures showed better building performance than for the linear procedures.
This paper addresses previously found data for similar studies which used steel special moment frames, special concentric braced frames, and buckling restrained braced frames for their primary lateral systems. The results showcase expected seismic performance levels for a commercial office building designed in a high seismicity region with varying structural systems and when using different analysis procedures.
Keywords: reinforced concrete structural walls, shear walls, performance-based analysis, ETABS, Perform-3D, flat plate, two-way slab.
|
5 |
Drift Capacity of Reinforced Concrete Walls with Lap SplicesWilliam G Pollalis (10709154) 27 April 2021 (has links)
<p>Twelve large-scale reinforced concrete (RC) specimens
were tested at Purdue University’s Bowen Laboratory to evaluate the
deformability of structural walls with longitudinal lap splices at their bases.
Eight specimens were tested under four-point bending and four specimens were
tested as cantilevers under constant axial force and cyclic reversals of
lateral displacement. All specimens failed abruptly by disintegration of the
lap splice, irrespective of what loading method was used or what splice details
were chosen. Previous work on lap splices has focused mainly on splice
strength. But, in consideration of demands requiring structural toughness (e.g.
blast, earthquake, differential settlement), deformability is arguably more
important than strength. </p>
<p>Approximations of wall
drift-strain relationships are presented in combination with estimates of
splice strength and deformability to provide lower-bound drift capacity
estimates for RC walls with lap splices at their bases. Deformations in slender
structural walls (with aspect ratios larger than 3) are controlled by flexure.
Shear deformations must be considered for walls with smaller aspect ratios. For
slender walls with lap splices comparable to those tested, the observations
collected suggest that drift capacities can be as low as 0.5%. That is: splices
with minimum concrete cover, minimum transverse reinforcement (0.25% transverse
reinforcement ratio) terminating in hooks, and lap splice lengths selected to
reach yielding in the spliced bars (approximately 60 bar diameters for splices
of Grade-60 reinforcement) can fail as yield is reached or soon after. For
splices of the same length, doubling the amount of hooked transverse
reinforcement increases deformation capacity by nearly 50%. By maintaining the
same transverse reinforcement ratio but confining splices with closed hoops
(instead of hooks), deformation capacity nearly doubles. Increasing splice
length increases the expected splice strength but also increases the strain
required to reach the same drift ratio. </p>
<p>Evidence from this and
similar experimental programs suggests that lap splices with minimum cover and
confined only by minimum transverse reinforcement terminating in hooks should
not be used in critical sections of structural walls when toughness is
required. To prevent abrupt failure during events that demand structural
toughness, it is recommended that lap splices be shifted away from locations
where yielding in structural walls is expected.</p>
|
6 |
ANALYTICAL AND EXPERIMENTAL ASSESSMENT OF REINFORCED CONCRETE BLOCK STRUCTURAL WALLS RESPONSE TO BLAST LOADSElSayed, Mostafa 11 1900 (has links)
The current thesis focuses on estimating the damage levels and evaluating the out-of-plane behavior of fully-grouted reinforced masonry (RM) structural walls under blast loading, a load that they are typically not designed to resist. Twelve third-scale RM walls were constructed and tested under free-field blast tests. Three different reinforcement ratios and three different charge weights have been used on the walls, with scaled distances down to 1.7 m/kg1/3 and two different boundary conditions, to evaluate the walls’ performances. In general, the results show that the walls are capable of withstanding substantial blast load levels with different extents of damage depending on their vertical reinforcement ratio and scaled distance.
It worth mention that the current definitions of damage states, specified in ASCE/SEI 59-11 (ASCE 2011) and CAN/CSA S850-12 (CSA 2012) standards, involve global response limits such as the component support rotations that are relatively simple to calculate. However, these quantitative damage state descriptors can be less relevant for cost–benefit analysis. Moreover, the reported experimental results showed that the use of quantitative versus qualitative damage descriptors specified by North American blast standards [ASCE 59-11 (ASCE 2011) and CSA S850-12 (CSA 2012)] can result in inconstancies in terms of damage state categorization. Therefore, revised damage states that are more suitable for a cost–benefit analysis, including repair technique and building downtime, were presented. These damage states are currently considered more meaningful and have been used to quantify the post-earthquake performance of buildings.
In addition, a nonlinear single-degree-of-freedom (SDOF) model is developed to predict the out-of-plane behavior of RM structural walls under blast loading. The proposed SDOF model is first verified using quasi-static and free-field blast tests and then subsequently used to extend the results of the reported experimental test results with different design parameters such as threat level, reinforcement ratio, available block width, wall height, and material characteristics. In general, brittle behavior was observed in the walls with a reinforcement ratio higher than 0.6%. This is attributed to the fact that seismically detailed structural masonry walls designed to respond in a ductile manner under in-plane loads might develop brittle failure under out-of-plane loads because of their reduced reinforcement moment arm. In addition, increased ductility can be achieved by using two reinforcement layers instead of a single layer, even if the reinforcement ratio is reduced. Also, it is recommended to consider the use of larger concrete masonry blocks for the construction of RM structural walls that are expected to experience blast loads in order to reduce the slenderness ratio and for the placement of two reinforcement layers.
Finally, a probabilistic risk assessment (PRA) framework is proposed in order to develop design basis threat (DBT) fragility curves for reinforced concrete block shear wall buildings, which can be utilized to meet different probabilities of failure targets. To illustrate the proposed methodology, an application is presented involving a medium–rise reinforced masonry building, under different DBT levels. The DBT fragility curves are obtained via Monte Carlo sampling of the random variables and are used to infer the locations, within the building premises, that are most suitable for the erection of barriers for blast hardening. / Thesis / Doctor of Philosophy (PhD)
|
7 |
Assessment of seismic drift of structural walls designed according to SANS 10160 - Part 4Le Roux, Rudolf Cornelis 12 1900 (has links)
Thesis (MScEng (Civil Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Reinforced concrete structures, designed according to proper capacity design guidelines, can deform
inelastically without loss of strength. Therefore, such structures need not be designed for full elastic
seismic demand, but could be designed for a reduced demand. In codified design procedures this
reduced demand is obtained by dividing the full elastic seismic demand by a code-defined behaviour
factor. There is however not any consensus in the international community regarding the appropriate
value to be assigned to the behaviour factor. This is evident in the wide range of behaviour factor
values specified by international design codes.
The purpose of this study is to assess the seismic drift of reinforced concrete structural walls in order
to evaluate the current value of the behaviour factor prescribed by SANS 10160-4 (2009). This is
done by comparing displacement demand to displacement capacity for a series of structural walls.
Displacement demand is calculated according to equivalency principles (equal displacement principle
and equal energy principle) and verified by means of a series of inelastic time history analyses (ITHA).
In the application of the equivalency rules the fundamental periods of the structural walls were based
on cracked sectional stiffness from moment-curvature analyses.
Displacement capacity is defined by seismic design codes in terms of inter storey drift limits, with the
purpose of preventing non-structural damage in building structures. In this study both the
displacement demand and displacement capacity were converted to ductility to enable comparison.
The first step in seismic force-based design is the estimation of the fundamental period of the
structure. The influence of this first crucial step is investigated in this study by considering two period
estimation methods. Firstly, the fundamental period may be calculated from an equation provided by
the design code which depends on the height of the building. This equation is known to overestimate
acceleration demand, and underestimate displacement demand. The second period estimation
method involves an iterative procedure where the stiffness of the structure is based on the cracked
sectional stiffness obtained from moment-curvature analysis. This method provides a more realistic
estimate of the fundamental period of structures, but due to its iterative nature it is not often applied in
design practice.
It was found that, regardless of the design method, the current behaviour factor value prescribed in
SANS 10160-4 (2010) is adequate to ensure that inter storey drift of structural walls would not exceed
code-defined drift limits. Negligible difference between the equivalency principles and ITHA was
observed. / AFRIKAANSE OPSOMMING: Gewapende beton strukture wat ontwerp is volgens goeie kapasiteitsontwerp-riglyne kan plasties
vervorm sonder verlies aan sterkte. Gevolglik hoef hierdie strukture nie vir die volle elastiese
seismiese aanvraag ontwerp te word nie, maar kan vir 'n verminderde aanvraag ontwerp word. In
gekodifiseerde ontwerpriglyne word so 'n verminderde aanvraag verkry deur die volle elastiese
aanvraag te deel deur 'n kode-gedefinieerde gedragsfaktor. Wat egter duidelik blyk uit die wye reeks
van gedragsfaktor waardes in internasionale ontwerp kodes, is dat daar geen konsensus bestaan in
die internasionale gemeenskap met betrekking tot die geskikte waarde van die gedragsfaktor nie.
Die doel van hierdie studie is om seismiese verplasing van gewapende beton skuifmure te evalueer
ten einde die waarde van die gedragsfaktor wat tans deur SANS 10160-4 (2009) voorgeskryf word te
assesseer. Dit word gedoen deur verplasingsaanvraag te vergelyk met verplasingskapasiteit.
In hierdie studie word verplasingsaanvraag bereken deur middel van gelykheidsbeginsels (gelyke
verplasingsbeginsel en gelyke energiebeginsel) en bevestig deur middel van nie-elastiese
tydsgeskiedenis analises (NTGA). Die effek van versagting as gevolg van nie-elastiese gedrag word
in aanmerking geneem in die toepassing van die gelykheidsbeginsels.
Verplasingskapasiteit word deur seismiese ontwerpkodes gedefinieer deur perke te stel op die
relatiewe laterale beweging tussen verdiepings, met die doel om nie-strukturele skade te verhoed.
Om verplasingsaanvraag en -kapasiteit te vergelyk in hierdie studie, word beide omgeskakel na
verplasingsduktiliteit.
Die eerste stap in kraggebaseerde seismiese ontwerp is om die fundamentele periode te beraam. Die
invloed van hierdie eerste kritiese stap word in hierdie studie aangespreek deur twee
periodeberamingsmetodes te ondersoek. Eerstens kan die fundamentele periode bereken word deur
'n vergelyking wat 'n funksie is van die hoogte van die gebou. Dit is egter algemeen bekend dat
hierdie vergelyking versnellingsaanvraag oorskat en verplasingsaanvraag onderskat. Die tweede
metode behels 'n iteratiewe prosedure waar die styfheid van die struktuur gebaseer word op die
gekraakte snit eienskappe, verkry vanaf 'n moment-krommingsanalise. 'n Beter beraming van die
fundamentele periode word verkry deur hierdie metode, maar as gevolg van die iteratiewe aard van
die metode word dit selde toegepas in ontwerppraktyk.
Die resultate van hierdie studie toon dat die huidige waarde van die gedragfaktor soos voorgeskryf in
SANS 10160-4 (2010) geskik is om te verseker dat die relatiewe laterale beweging tussen verdiepings
binne kode-gedefinieerde perke sal bly. Onbeduidende verskil is waargeneem tussen die resultate
van gelykheidsbeginsels en NTGA.
|
8 |
Static And Dynamic Behaviour Of Cement Stabilised Rammed Earth Panels And Building ModelsAnitha, M 12 1900 (has links)
Rammed earth is one of the earliest building materials used for structural walls. Stabilised rammed earth is a variant of traditional or pure rammed earth that involves addition of a small amount of cement to improve strength and durability. Rammed earth buildings experience in-plane shear forces as well as flexural stresses due to out-of-plane bending especially during earthquakes. The thesis attempts to examine the behaviour of cement stabilised rammed earth wall elements and building models subjected to lateral loads.
A brief introduction to rammed earth construction followed by a review of literature on rammed earth and details of the existing codes of practice on rammed earth is provided in Chapter 1.
Chapter 2 deals with the flexural strength, modulus of rupture, stress-strain relationships and free vibration characteristics of cement stabilised rammed earth (CSRE) in greater detail. Properties of raw materials used in the experimental investigations followed by a detailed description of the experimental programme, method of preparation of various types of specimens and their testing procedures are provided. Flexure strength and modulus of rupture were determined in both the orthogonal directions. Influence of (a) thickness of the specimen, (b) direction of compacted layers with respect to the flexural tension developed and (c) effect of cement slurry coating between the compacted layers on the flexural strength of CSRE were examined. The investigations show that flexure strength increases with the increase in the specimen thickness and a coat cement slurry on the compacted layers leads to improvement in flexure strength. The flexural strength parallel to compacted layers is higher when compared to flexure strength perpendicular to compacted layers. Stress-strain relationships show that the initial tangent modulus of CSRE in saturated condition is about 60% of that in dry condition. Damping ratio as obtained from the free vibration studies is found to be 0.022 in the two orthogonal directions.
Dynamic characteristics of CSRE building models are presented in Chapter 3. A simple alternative to shake table called as “Shock Table” was used in the present investigation for providing base motion to the building model. A half-scale CSRE building model with R.C lintels only above door and window openings (with no earthquake resistant features) was constructed on the Shock Table. The wall thickness of the building model was 100 mm. Procedure for construction, instrumentation and testing of the CSRE building model is presented. Responses measured and damages observed are discussed in detail. Finite element (FE) analyses were performed on six different building models with different earthquake resistant features using commercially available FE software (NISA V17). Both free vibration and forced vibration analyses were performed. Natural frequencies and forced vibration responses (acceleration) of building model (BM1) obtained from experiment and FE analysis were compared. Responses (free vibration and forced vibration) of other five building models were predicted using FE analysis. Crack patterns of the building models with roof and without roof are compared. The thesis ends with a summary of the results and concluding remarks in Chapter 4.
|
9 |
Dynamic Characteristics And Performance Assessment Of Reinforced Concrete Structural WallsKazaz, Ilker 01 February 2010 (has links) (PDF)
The analytical tools used in displacement based design and assessment procedures require accurate strain limits to define the performance levels. Additionally, recently proposed changes to modeling and acceptance criteria in seismic regulations for both flexure and shear dominated reinforced concrete structural walls proves that a comprehensive study is required for improved limit state definitions and their corresponding values. This is due to limitations in the experimental setups, such that most previous tests used a single actuator at the top of the wall, which does not reflect the actual loading condition, and infeasibility of performing tests of walls of actual size in actual structural configuration. This study utilizes a well calibrated finite element modeling tool to investigate the relationship between the global drift, section rotation and curvature, and local concrete and steel strains at the extreme fiber of rectangular structural walls. Functions defining more exact limits of modeling parameters and acceptance criteria for rectangular reinforced concrete walls were developed. This way a strict evaluation of the requirements embedded in the Turkish Seismic Code and other design guidelines has become possible. Several other aspects of performance evaluation of structural walls were studied also. Accurate finite element modeling strategies and analytical models of wall and frame-wall systems were developed for seismic response calculations. The models are able to calculate both the static and dynamic characteristics of wall type buildings efficiently. Seismic responses of wall type buildings characterized with increasing wall area in the plan were analyzed under design spectrum compatible normal ground motions.
|
Page generated in 0.6199 seconds