• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure-Function Correlations In Aminoacyl tRNA Synthetases Through The Dynamics Of Structure Network

Ghosh, Amit 07 1900 (has links)
Aminoacyl-tRNA synthetases (aaRSs) are at the center of the question of the origin of life and are essential proteins found in all living organisms. AARSs arose early in evolution to interpret genetic code and are believed to be a group of ancient proteins. They constitute a family of enzymes integrating the two levels of cellular organization: nucleic acids and proteins. These enzymes ensure the fidelity of transfer of genetic information from the DNA to the protein. They are responsible for attaching amino acid residues to their cognate tRNA molecules by virtue of matching the nucleotide triplet, which is the first step in the protein synthesis. The translation of genetic code into protein sequence is mediated by tRNA, which accurately picks up the cognate amino acids. The attachment of the cognate amino acid to tRNA is catalyzed by aaRSs, which have binding sites for the anticodon region of tRNA and for the amino acid to be attached. The two binding sites are separated by ≈ 76 Å and experiments have shown that the communication does not go through tRNA (Gale et al., 1996). The problem addressed here is how the information of binding of tRNA anticodon near the anticodon binding site is communicated to the active site through the protein structure. These enzymes are modular with distinct domains on which extensive kinetic and mutational experiments and supported by structural data are available, highlighting the role of inter-domain communication (Alexander and Schimmel, 2001). Hence these proteins present themselves as excellent systems for in-silico studies. Various methods involved for the construction of protein structure networks are well established and analyzed in a variety of ways to gain insights into different aspects of protein structure, stability and function (Kannan and Vishveshwara, 1999; Brinda and Vishveshwara, 2005). In the present study, we have incorporated network parameters for the analysis of molecular dynamics (MD) simulation data, representing the global dynamic behavior of protein in a more elegant way. MD simulations have been performed on the available (and modeled) structures of aaRSs bound to a variety of ligands, and the protein structure networks (PSN) of non-covalent interactions have been characterized in dynamical equilibrium. The changes in the structure networks are used to understand the mode of communication, and the paths between the two sites of interest identified by the analysis of the shortest path. The allosteric concept has played a key role in understanding the biological functions of aaRSs. The rigidity/plasticity and the conformational population are the two important ideas invoked in explaining the allosteric effect. We have explored the conformational changes in the complexes of aaRSs through novel parameters such as cliques and communities (Palla et al., 2005), which identify the rigid regions in the protein structure networks (PSNs) constructed from the non-covalent interactions of amino acid side chains. The thesis consists of 7 chapters. The first chapter constitutes the survey of the literature and also provides suitable background for this study. The aims of the thesis are presented in this chapter. Chapter 2 describes various techniques employed and the new techniques developed for the analysis of PSNs. It includes a brief description of well -known methods of molecular dynamics simulations, essential dynamics, and cross correlation maps. The method used for the construction of graphs and networks is also described in detail. The incorporation of network parameters for the analysis of MD simulation data are done for the first time and has been applied on a well studied protein lysozyme, as described in chapter 3. Chapter 3 focuses on the dynamical behavior of protein structure networks, examined by considering the example of T4-lysozyme. The equilibrium dynamics and the process of unfolding are followed by simulating the protein with explicit water molecules at 300K and at higher temperatures (400K, 500K) respectively. Three simulations of 10ns duration have been performed at 500K to ensure the validity of the results. The snapshots of the protein structure from the simulations are represented as Protein Structure Networks (PSN) of non-covalent interactions. The strength of the non-covalent interaction is evaluated and used as an important criterion in the construction of edges. The profiles of the network parameters such as the degree distribution and the size of the largest cluster (giant component) have been examined as a function of interaction strength (Ghosh et al., 2007). We observe a critical strength of interaction (Icritical) at which there is a transition in the size of the largest cluster. Although the transition profiles at all temperatures show behavior similar to those found in the crystal structures, the 500K simulations show that the non-native structures have lower Icritical values. Based on the interactions evaluated at Icritical value, the folding/unfolding transition region has been identified from the 500K simulation trajectories. Furthermore, the residues in the largest cluster obtained at interaction strength higher than Icritical have been identified to be important for folding. Thus, the compositions of the top largest clusters in the 500K simulations have been monitored to understand the dynamical processes such as folding/unfolding and domain formation/disruption. The results correlate well with experimental findings. In addition, the highly connected residues in the network have been identified from the 300K and 400K simulations and have been correlated with the protein stability as determined from mutation experiments. Based on these analyses, certain residues, on which experimental data is not available, have been predicted to be important for the folding and the stability of the protein. The method can also be employed as a valuable tool in the analysis of MD simulation data, since it captures the details at a global level, which may elude conventional pair-wise interaction analysis. After standardizing the concept of dynamical network analysis using Lysozyme, it was applied to our system of interest, the aaRSs. The investigations carried out on Methionyl-tRNA synthetases (MetRS) are presented in chapter 4. This chapter is divided into three parts: Chapter 4A deals with the introduction to aminoacyl tRNA synthetases (aaRS). Classification and functional insights of aaRSs obtained through various studies are presented. Chapter 4B is again divided into parts: BI and BII. Chapter 4BI elucidates a new technique developed for finding communication pathways essential for proper functioning of aaRS. The enzymes of the family of tRNA synthetases perform their functions with high precision, by synchronously recognizing the anticodon region and the amino acylation region, which is separated by about 70Å in space. This precision in function is brought about by establishing good communication paths between the two regions. We have modelled the structure of E.coli Methionyl tRNA synthetase, which is complexed with tRNA and activated methionine. Molecular dynamics simulations have been performed on the modeled structure to obtain the equilibrated structure of the complex and the cross correlations between the residues in MetRS. Furthermore, the network analysis on these structures has been carried out to elucidate the paths of communication between the aminoacyl activation site and the anticodon recognition site (Ghosh and Vishveshwara, 2007). This study has provided the detailed paths of communication, which are consistent with experimental results. A similar study on the (MetRS + activated methionine) and (MetRS+tRNA) complexes along with ligand free-native enzyme has also been carried out. A comparison of the paths derived from the four simulations has clearly shown that the communication path is strongly correlated and unique to the enzyme complex, which is bound to both the tRNA and the activated methionine. The method developed here could also be utilized to investigate any protein system where the function takes place through long distance communication. The details of the method of our investigation and the biological implications of the results are presented in this chapter. In chapter 4BII, we have explored the conformational changes in the complexes of E.coli Methionyl tRNA synthetase (MetRS) through novel parameters such as cliques and communities, which identify the rigid regions in the protein structure networks (PSNs). The rigidity/plasticity and the conformational population are the two important ideas invoked in explaining the allosteric effect. MetRS belongs to the aminoacyl tRNA Synthetases (aaRSs) family that play a crucial role in initiating the protein synthesis process. The network parameters evaluated here on the conformational ensembles of MetRS complexes, generated from molecular dynamics simulations, have enabled us to understand the inter-domain communication in detail. Additionally, the characterization of conformational changes in terms of cliques/communities has also become possible, which had eluded conventional analyses. Furthermore, we find that most of the residues participating in clique/communities are strikingly different from those that take part in long-range communication. The cliques/communities evaluated here for the first time on PSNs have beautifully captured the local geometries in their detail within the framework of global topology. Here the allosteric effect is revealed at the residue level by identifying the important residues specific for structural rigidity and functional flexibility in MetRS. Chapter 4C focuses on MD simulations of Methionyl tRNA synthetase (AmetRS) from a thermophilic bacterium, Aquifex aeolicus. As describe in Chapter 4B, we have explored the communication pathways between the anticodon binding region and the aminoacylation site, and the conformational changes in the complexes through cliques and communities. The two MetRSs from E.coli and Aquifex aeolicus are structurally and sequentially very close to each other. But the communication pathways between anticodon binding region and the aminoacylation site from A. aeolicus have differed significantly with the communication paths obtained from E.coli. The residue composition and cliques/communities structure participating in communication are not similar in the MetRSs of both these organisms. Furthermore the formation of cliques/communities and hubs in the communication paths are more in A. aeolicus compared to E.coli. The participation of structurally homologous linker peptide, essential for orienting the two domains for efficient communication is same in both the organisms although, the residues composition near domain interface regions including the linker peptide is different. Thus, the diversity in the functioning of two different MetRS has been brought out, by comparing the E.coli and Aquifex aeolicus systems. Protein Structure network analysis of MD simulated trajectories of various ligand bound complexes of Escherichia coli Cysteinyl-tRNA synthetase (CysRS) have been discussed in Chapter 5. The modeling of the complex is done by docking the ligand CysAMP into the tRNA bound structure of E.coli Cysteinyl tRNA synthetase. Molecular dynamics simulations have been performed on the modeled structure and the paths of communications were evaluated using a similar method as used in finding communication paths for MetRS enzymes. Compared to MetRS the evaluation of communication paths in CysRS is complicated due to presence of both direct and indirect readouts. The direct and indirect readouts (DR/IR) involve interaction of protein residues with base-specific functional group and sugar-phosphate backbone of nucleic acids respectively. Two paths of communication between the anticodon region and the activation site has been identified by combining the cross correlation information with the protein structure network constructed on the basis of non-covalent interaction. The complete paths include DR/IR interactions with tRNA. Cliques/communities of non-covalently interacting residues imparting structural rigidity are present along the paths. The reduction of cooperative fluctuation due to the presence of community is compensated by IR/DR interaction and thus plays a crucial role in communication of CysRS. Chapter 6 focuses on free energy calculations of aminoacyl tRNA synthetases with various ligands. The free energy contributions to the binding of the substrates are calculated using a method called MM-PBSA (Massova and Kollman, 2000). The binding free energies were calculated as the difference between the free energy of the enzyme-ligand complex, and the free ligand and protein. The ligand unbinding energy values obtained from the umbrella sampling MD correlates well with the ligand binding energies obtained from MM-PBSA method. Furthermore the essential dynamics was captured from MD simulations trajectories performed on E.coli MetRS, A. aeolius MetRS and E.coli CysRS in terms of the eigenvalues. The top two modes account for more than 50% of the motion in essential space for systems E.coli MetRS, A. aeolius MetRS and E.coli CysRS. Population distribution of protein conformation states are looked at the essential plane defined by the two principal components with highest eigenvalues. This shows how aaRSs existed as a population of conformational states and the variation with the addition of ligands. The population of conformational states is converted into Free energy contour surface. From free energy surfaces, it is evident that the E.coli tRNAMet bound MetRS conformational fluctuations are more, which attributes to less rigidity in the complex. Whereas E.coli tRNACys bound CysRS conformational fluctuations are less and this is reflected in the increase in rigidity of the complex as confirmed by its entropic contribution. Future directions have been discussed in the final chapter (Chapter 7). Specifically, it deals with the ab-initio QM/MM study of the enzymatic reaction involved in the active site of E.coli Methionyl tRNA synthetase. To achieve this, two softwares are integrated: the Quantum Mechanics (QM) part includes small ligands and the Molecular Mechanics (MM) part as protein MetRS are handled using CPMD and Gromacs respectively. The inputs for two reactions pathways are prepared. First reaction involves cyclization reaction of homocysteine in the active site of MetRS and the second reaction deals with charging of methionine in the presence of ATP and magnesium ion. These simulations require very high power computing systems and also time of computation is also very large. With the available computational power we could simulate up to 10ps and it is insufficient for analysis. The future direction will involve the simulations of these systems for longer time, followed by the analysis for reaction pathways.
2

Protein-DNA Graphs And Interaction Energy Based Protein Structure Networks

Vijayabaskar, M S 01 1900 (has links) (PDF)
Proteins orchestrate a number of cellular processes either alone or in concert with other biomolecules like nucleic acids, carbohydrates, and lipids. They exhibit an intrinsic ability to fold de novo to their functional states. The three–dimensional structure of a protein, dependent on its amino acid sequence, is important for its function. Understanding this sequence– structure–function relationship has become one of the primary goals in biophysics. Various experimental techniques like X–ray crystallography, Nuclear Magnetic Resonance (NMR), and site–directed mutagenesis have been used extensively towards this goal. Computational studies include mainly sequence based, and structure based approaches. The sequence based approaches such as sequence alignments, phylogenetic analysis, domain identification, statistical coupling analysis etc., aim at deriving meaningful information from the primary sequence of the protein. The structure based approaches, on the other hand, use structures of folded proteins. Recent advances in structure determination and efforts by various structural consortia have resulted in an enormous amount of structures available for analysis. Innumerable observations such as the allowed and disallowed regions in the conformations of a peptide unit, hydrophobic core in globular proteins, existence of regular secondary structures like helices, sheets, and turns and a limited fold space have been landmarks in understanding the characteristics of protein structures. The uniqueness of protein structure is attained through non–covalent interactions among the constituent amino acids. Analyses of protein structures show that different types of non–covalent interactions like hydrophobic interactions, hydrogen bonding, salt bridges, aromatic stacking, cation–π interactions, and solvent interactions hold protein structures together. Although such structure analyses have provided a wealth of information, they have largely been performed at a pair–wise level and an investigation involving such pair–wise interactions alone is not sufficient to capture all the determinants of protein structures, since they happen at a global level. This consideration has led to the development of graphs/networks for proteins. Graphs or Networks are a collection of nodes connected by edges. Protein Structure Networks (PSNs) can be constructed using various definitions of nodes and edges. Nodes may vary from atoms to secondary structures in Synopsis proteins, and the edges can range from simple atom–atom distances to distance between secondary structures. To study the interplay of amino acids in structure formation, the most commonly used PSNs consider amino acids as nodes. The criterion for edge definition, however, varies. PSNs can be constructed at a course grain level by considering the distances between Cα/Cβ atoms, any side–chain atoms, or the centroids of the amino acids. At a finer level, PSNs can be constructed using atomic details by considering the interaction types or by computing the extent of interaction between amino acids. Representation of proteins as networks and their analyses has given us a unique perspective on various aspects such as protein structure organization, stability, folding, function, oligomerization and so on. A variety of network properties like the degree distribution, clustering coefficient, characteristic path lengths, clusters, and hubs have been investigated. Most of these studies are carried out on protein structures alone. However, the interaction of proteins with other biopolymers like nucleic acids is vital for many crucial biological processes like transcription and translation. In this thesis, we have attempted to address this problem by constructing and analyzing combined graphs of the structures of protein and DNA. Also, in almost all of the PSN studies, the connections have been made solely on the basis of geometric criteria. In the later part of the thesis, we have taken PSN a step further by defining the non–covalent connections based on chemical considerations in the form of the energies of interactions. The thesis contains two sections. The first part mainly involves the construction and application of PSNs to study DNA binding proteins. The DNA binding proteins are involved in several high fidelity processes like DNA recombination, DNA replication, and transcription. Although the protein– DNA interfaces have been extensively analyzed using pair–wise interactions, we gain additional global perspective from network approach. Furthermore, most of the earlier investigations have been carried out from the protein point of view (protein centric) and the present network approach aims to combine both the protein centric and the DNA centric view points by construction and analyses of protein–DNA graphs. These studies are described in Chapters 3 and 4. The second part of the thesis discusses the development, characterization, and application of protein structure networks based on non– covalent interaction energies. The investigations are presented in chapters 5 and 6. Chapter 3 discusses the development of Protein–DNA Graphs (PDGs) where the protein–DNA interfaces are represented as networks. PDG is a bipartite network in which amino acids form a set of nodes and the nucleotides form the other set. The extent of interaction between the two diverse types of biopolymers is normalized to define the strength of interaction. Edges are then constructed based on the interaction strength between amino acids and nucleotides. Such a representation, reported here for the first time, provides a holistic view of the interacting surface. The developed PDGs are further analyzed in terms of clusters of interacting residues and identification of highly connected residues, known as hubs, along the protein–DNA interface and discussed in terms of their interacting motifs. Important clusters have been identified in a set of protein–DNA complexes, where the amino acids interact with different chemical components of DNA such as phosphate, deoxyribose and base with varying degrees of connectivity. An analysis of such fragment based PDGs provided insights into the nature of protein–DNA interaction, which could not have been obtained by conventional pair–wise analysis. The predominance of deoxyribose–amino acid clusters in beta–sheet proteins, distinction of the interface clusters in helix–turn–helix and the zipper type proteins are some of the new findings from the analysis of PDGs. Additionally, a potential classification scheme has been proposed for protein–DNA complexes on the basis of their interface clusters. This classification scheme gives a general idea of how the proteins interact with different components of DNA in various complexes. The present graph–based method has provided a deeper insight into the analysis of the protein–DNA recognition mechanisms from both protein and DNA view points, thus throwing more light on the nature and specificity of these interactions (Sathyapriya, Vijayabaskar et al. 2008). Chapter 4 delineates the application of PSN to an important problem in molecular biology. An analysis of interface clusters from multimeric proteins provides a clue to the important residues contributing to the stability of the oligomers. One such prediction was made on the DNA binding protein under starvation from Mycobacterium smegmatis (Ms–Dps) using PSNs. Two types of trimers, Trimer A (tA) and Trimer B (tB) can be derived from the dodecamer because of the inherent three fold symmetry of the spherical crystal structure. The irreversible dodecamerization of these native Ms--Dps trimers, in vitro, is known to be directly associated with the bimodal function (DNA binding and iron storage) of this protein. Interface clusters which were Synopsis identified from the PSNs of the derived trimers, allowed us to convincingly predict the residues E146 and F47 for mutation studies. The prediction was followed up by our experimental collaborators (Rakhi PC and Dipankar Chatterji), which led to the elucidation of the molecular mechanism behind the in vitro oligomerization of Ms--Dps. The F47E mutant was impaired in dodecamerization, and the double mutant (E146AF47E) was a native monomer in solution. These two observations suggested that the two trimers are important for dodecamerization and that the residues selected are important for the structural stability of the protein in vitro. From the structural and functional characterizations of the mutants, we have proposed an oligomerization pathway of Ms–Dps (Chowdhury, Vijayabaskar et al. 2008). The second part of the thesis involves the development, characterization (Chapter 5) and application (Chapter 6) of Protein Energy Networks (PENs). As mentioned above, the PSNs constructed on the geometric basis efficiently capture the topology and associated properties at the level of atom–atom contact. The chemistry, however, is not completely captured by these network representations, and a wealth of information can be extracted by incorporating the details of chemical interactions. This study is an advancement over the existing PSNs, in terms of edges being defined on the basis of interaction energies among the amino acids. This interaction energy is the resultant of various types of interactions within a protein. Use of such realistic interaction energies in a weighted network captures all the essential features responsible for maintaining the protein structure. The methodology involved in representing proteins as interaction energy weighted networks, with realistic edge weights obtained from standard force fields is described in Chapter 5. The interaction energies were derived from equilibrium ensembles (obtained using molecular dynamics simulations) to account for the structural plasticity, which is essential for function elucidation. The suitability of this method to study single static structures was validated by obtaining interaction energies on minimized crystal structures of proteins. The PENs were then characterized using network parameters like edge weight distributions, clusters, hubs, and shortest paths. The PENs exhibited three distinct behaviors in terms of the size of the largest connected cluster as a function of interaction energy; namely, the pre–transition, transition, and post transition regions, irrespective of the topology of the proteins. The pre– transition region (energies<–20 kJ/mol) comprises smaller clusters with mainly charged and polar residues as hubs. Crucial topological changes take place in the transition region (–10 to –20 kJ/mol), where the smaller clusters aggregate, through low energy van der Waals interactions, to form a single large cluster in the post–transition region (energies>–10 kJ/mol). These behaviors reinforce the concept that hydrophobic interactions hold together local clusters of highly interacting residues, keeping the protein topology intact (Vijayabaskar and Vishveshwara 2010). The applications of PENs in studying protein organization, allosteric communication, thermophilic stability and the structural relation of remote homologues of TIM barrel families have been outlined in Chapter 6. In the first case, the weighted networks were used to identify stabilization regions in protein structures and hierarchical organization in the folded proteins, which may provide some insights into the general mechanism of protein folding and stabilization (Vijayabaskar and Vishveshwara 2010). In the second case the features of communication paths in proteins were elucidated from PENs, and specific paths have been extensively discussed in the case of PDZ domain, which is known to bring together protein partners, mediating various cellular processes. Changes in PEN upon ligand binding, resulting in alterations of the shortest paths (energetically most favorable paths) for a small fraction of residues, indicated that allosteric communication is anisotropic in PDZ. The observations also establish that the shortest paths between functionally important sites traverse through key residues in PDZ2 domain. Furthermore, shortest paths in PENs provide us the exact pathways of communication between residues. Although the communication in PDZ has been extensively investigated, detailed information of pathways at the energy level has emerged for the first time from the present study from PEN analysis (Vijayabaskar and Vishveshwara 2010). In the third case, a set of thermophilic and mesophilic proteins were compared to determine the factors responsible for their thermal stability from a network perspective using PENs. The sub– graph parameters such as cluster population, hubs and cliques were the prominent contributing factors for thermal stability. Also, the thermophilic proteins have a better–packed hydrophobic core. The property of thermophilic protein to increase stability by increasing the connectivity but retain conformational flexibility is discussed from a cliques and communities (higher order inter–connection of residues) perspective (Vijayabaskar and Vishveshwara 2010). Finally, the remote homologues from the TIM barrel fold have been analyzed using PENs to identify the interactions responsible for the maintenance of the fold despite low sequence similarity. A study of conserved Synopsis interactions in family specific PENs reveals that the formation of the central beta barrel is vital for the TIM barrel formation. The beta barrel is being formed by either conserved long range electrostatic interactions or by tandem arrangement of low energy hydrophobic interactions. The contributions of helix–sheet and helix–helix interactions are not conserved in the families. This study suggests that the sequentially near residues forming the helix–sheet interactions are common in many folds and hence formed despite non– conservation, whereas formation of beta barrel requires long range interactions, thus more conserved within the families. The thesis also consists of an appendix in which a web–tool, developed to express proteins as networks and analyze these networks using different network parameters is discussed. The web based program–GraProStr allows us to represent proteins as structure graphs/networks by considering the amino acid residues as nodes and representing non–covalent interactions among them as edges. The different networks (classified based on edge definition) which can be obtained using GraProStr are Protein Side–chain Networks (PScNs), Cα/Cβ distance based networks (PcNs) and Protein– Ligand Networks (PLNs). The parameters which can be generated include clusters, hubs, cliques (rigid regions in proteins) and communities (group of cliques). It is also possible to differentiate the above mentioned parameters for monomers and interfaces in multimeric proteins. The well tested tool is now made available to the scientific community for the first time. GraProStr is available online and can be accessed from http://vishgraph.mbu.iisc.ernet.in/GraProStr/index.html. With a variety of structure networks, and a set of easily interpretable network parameters GraProStr can be useful is analyzing protein structures from a global paradigm (Vijayabaskar, Vidya et al. 2010). In summary, we have extensively studied DNA binding proteins using side– chain based protein structure networks and by integrating the DNA molecule into the network. Also, we have upgraded the existing methodology of generating structure networks, by representing both the geometry and the chemistry of residues as interaction energies among them. Using this energy based network we have studied diverse problems like protein structure formation, stabilization, and allosteric communication in detail. The above mentioned methodologies are a considerable advancement over existing structure network representations and have been shown in this thesis to shed more light on the structural features of proteins.

Page generated in 0.0465 seconds