• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultimate load limit analysis of steel structures accounting for nonlinear behaviour of connections / Analyse limite ultime des structures en acier en prenant en compte le comportement non linéaire des connexions

Imamovic, Ismar 22 September 2017 (has links)
Cette thèse traite de l'analyse limite des structures de châssis en acier, qui s'utilise souvent comme la structure principale de support des bâtiments. La structure du cadre en acier est caractérisée par une réponse très ductile et un grand potentiel pour dissiper l'énergie, ce qui est crucial pour la résistance par rapport aux tremblements de terre. La ductilité dans la réponse de la structure est la cause du comportement du matériau lui-même et du comportement des connexions entre les éléments de la structure. Les connexions entre les poutres et les poteaux peuvent influencer de manière significative la réponse de la structure du cadre en acier, parfois jusqu'à 30%. L'idée est de intégrer le comportement des connexions par les éléments de poutres qui seront situés dans les coins du cadre et la modélisation du reste serra fait avec des éléments de poutres non-linéaires qui décrirons le comportement des poutres en acier. Cette recherche est composée de deux parties. La première partie est consacrée au comportement des connexions structurelles, la deuxième partie présente le développement de l'élément fini du faisceau non linéaire capable de représenter le comportement ductile d'un élément de la structure en acier. Dans la première partie de la thèse, nous définissons la procédure d'identification des paramètres constitutifs pour le modèle couplé de plasticité-dégâts avec dix-huit inconnus. Ce modèle constitutif est très robuste et capable de représenter une large gamme de problèmes. La procédure définie a été utilisée dans la préparation de tests expérimentaux pour trois types de connexions en acier structuré. Les tests expérimentaux ont été effectués pour deux cas de charge. Pour la première, la charge a été appliquée dans un sens avec les cycles de chargement et de déchargement. À partir des mesures expérimentales, nous avons conclu que le modèle de plasticité peut bien représentée le comportement de la connexion structurale. Paramètres constitutifs ont été déterminés à partir des résultats de l'expérimentation, on a utilisé une poutre géométriquement exacte avec la loi bilinéaires renforcement du matériel et la loi linéaire pour le ramollissement. Également, on a effectué des essais expérimentaux de deux types de raccords en acier en cas de chargement cyclique. Les données mesurées montrent que le modèle de la plasticité n'est pas assez bon pour décrire le comportement de connexion pour ce type de charge. A savoir, en raison de changements du sens de l'application du chargement, les connexions montrent moins de rigidité, qui peut être décrite avec un modèle constitutif de dommages. Pour cette raison, nous avons développé un nouveau modèle plasticité-dommages qui est capable d'inclure le phénomène mentionné ci-dessus. A la fin de cette section est faite l'identification des paramètres constitutifs. La deuxième partie de la thèse de doctorat est composé de formulations théoriques et la mise en œuvre numérique des faisceaux géométriquement exacte. La réponse de durcissement de la poutre comprend l'interaction entre les forces de la section résultant du stress (N, T et M), et la réponse de ramollissement est définit par la loi non linéaire. Ce type d'élément fini de poutre est capable de décrire le comportement ductile des structures en acier et inclure les effets du second ordre, qui sont très importantes pour l'analyse ultime des structures de cadre en acier. L'élément fini développé de poutre géométriquement exacte et les lois définies de liaison de comportement dans la construction en acier, offrant la possibilité d'une analyse de haute qualité des structures en acier. En utilisant les modèles de poutre proposé et la méthodologie de modélisation des structures de châssis en acier, il est possible de déterminer une distribution réaliste des forces de section transversale , y compris la redistribution due à la formation de rotules plastiques. / This thesis deals with the ultimate load limit analysis of steel frame structures. The steel frame structure has a very ductile response and a large potential to dissipate energy, which is crucial in the case of earthquakes. The ductility in the response of the structure comes from the behavior of the material itself and the behavior of the semi-rigid structural connections. The semi-rigid connections between beams and columns can significantly influence the response of the structure, sometimes up to 30%. In this thesis, we propose a methodology for modeling steel frame structures with included connection behavior. The idea is to model the behavior of the structural connections by the beam elements positioned in the corners of the steel frame structure. Other members of the steel frame structure, steel beams, and columns, will be modeled with nonlinear beam elements. This research consists of two parts. The first part deals with the behavior of the structural steel connections. In the second part, we present the development of the nonlinear beam element capable of representing the ductile behavior of steel structural elements, beams and columns. In the first part of the thesis, we define constitutive parameters identification procedure for the coupled plasticity-damage model with eighteen unknowns. This constitutive model is very robust and capable of representing a wide range of problems. The identification procedure was used in the preparation of experimental tests for three different types of structural steel connections. The experimental tests have been performed for two load cases. In the first, the load was applied in one direction with both the loading and unloading cycles. From the experimental measurements, we have concluded that the response of the experimental structure can be represented by the plasticity model only because no significant change in the elastic response throughout the loading program was observed. Therefore, we have chosen an elastoplastic geometrically exact beam to describe connection behavior. The hardening response of the beam is governed by bilinear law, and the softening response is governed by nonlinear exponential law. The identification of the parameters has been successfully done with fifteen unknown parameters identified. The two types of the experimental structures were also exposed to the cyclic loading. Measured experimental data shows complex connection behavior that cannot be described by the plasticity model alone. Namely, after changing load direction stiffness of the connection decreases. This suggests that the damage model should be incorporated in the constitutive law for the connections behavior as well. Therefore, we propose a new coupled plasticity-damage model capable of representing the loss in the stiffness of the connection with the changing of the load direction. At the end of this part, we also give the constitutive parameters identification for the proposed model. The second part of the thesis deals with the theoretical formulation and numerical implementation of the elastoplastic geometrically exact beam. The hardening response of the beam includes interaction between stress resultant section forces (N, T and M), and the softening response of the beam, which is governed by the nonlinear law. This type of the beam element is capable of representing the ductile behavior of a steel frame structure, and it takes into account second order theory effects. Performed numerical simulations show that the proposed geometrically nonlinear beam element is very robust and is able to provide a more precise limit load analysis of steel frame structures. By using proposed methodology for modeling steel structures, we are able to obtain the real distribution of section forces, including their redistribution caused by forming of the hinges and the connections behavior.
2

A Study On The Predictive Optimal Active Control Of Civil Engineering Structures

Keyhani, Ali 12 1900 (has links)
Uncertainty involved in the safe and comfort design of the structures is a major concern of civil engineers. Traditionally, the uncertainty has been overcome by utilizing various and relatively large safety factors for loads and structural properties. As a result in conventional design of for example tall buildings, the designed structural elements have unnecessary dimensions that sometimes are more than double of the ones needed to resist normal loads. On the other hand the requirements for strength and safety and comfort can be conflicting. Consequently, an alternative approach for design of the structures may be of great interest in design of safe and comfort structures that also offers economical advantages. Recently, there has been growing interest among the researchers in the concept of structural control as an alternative or complementary approach to the existing approaches of structural design. A few buildings have been designed and built based on this concept. The concept is to utilize a device for applying a force (known as control force) to encounter the effects of disturbing forces like earthquake force. However, the concept still has not found its rightful place among the practical engineers and more research is needed on the subject. One of the main problems in structural control is to find a proper algorithm for determining the optimum control force that should be applied to the structure. The investigation reported in this thesis is concerned with the application of active control to civil engineering structures. From the literature on control theory. (Particularly literature on the control of civil engineering structures) problems faced in application of control theory were identified and classified into two categories: 1) problems common to control of all dynamical systems, and 2) problems which are specially important in control of civil engineering structures. It was concluded that while many control algorithms are suitable for control of dynamical systems, considering the special problems in controlling civil structures and considering the unique future of structural control, many otherwise useful control algorithms face practical problems in application to civil structures. Consequently a set of criteria were set for judging the suitability of the control algorithms for use in control of civil engineering structures. Various types of existing control algorithms were investigated and finally it was concluded that predictive optimal control algorithms possess good characteristics for purpose of control of civil engineering structures. Among predictive control algorithms, those that use ARMA stochastic models for predicting the ground acceleration are better fitted to the structural control environment because all the past measured excitation is used to estimate the trends of the excitation for making qualified guesses about its coming values. However, existing ARMA based predictive algorithms are devised specially for earthquake and require on-line measurement of the external disturbing load which is not possible for dynamic loads like wind or blast. So, the algorithms are not suitable for tall buildings that experience both earthquake and wind loads during their life. Consequently, it was decided to establish a new closed loop predictive optimal control based on ARMA models as the first phase of the study. In this phase it was initially established that ARMA models are capable of predicting response of a linear SDOF system to the earthquake excitation a few steps ahead. The results of the predictions encouraged a search for finding a new closed loop optimal predictive control algorithm for linear SDOF structures based on prediction of the response by ARMA models. The second part of phase I, was devoted to developing and testing the proposed algorithm The new developed algorithm is different from other ARMA based optimal controls since it uses ARMA models for prediction of the structure response while existing algorithms predict the input excitation. Modeling the structure response as an AR or ARMA stochastic process is an effective mean for prediction of the structure response while avoiding measurement of the input excitation. ARMA models used in the algorithm enables it to avoid or reduce the time delay effect by predicting the structure response a few steps ahead. Being a closed loop control, the algorithm is suitable for all structural control conditions and can be used in a single control mechanism for vibration control of tall buildings against wind, earthquake or other random dynamic loads. Consequently the standby time is less than that for existing ARMA based algorithms devised only for earthquakes. This makes the control mechanism more reliable. The proposed algorithm utilizes and combines two different mathematical models. First model is an ARMA model representing the environment and the structure as a single system subjected to the unknown random excitation and the second model is a linear SDOF system which represents the structure subjected to a known past history of the applied control force only. The principle of superposition is then used to combine the results of these two models to predict the total response of the structure as a function of the control force. By using the predicted responses, the minimization of the performance index with respect to the control force is carried out for finding the optimal control force. As phase II, the proposed predictive control algorithm was extended to structures that are more complicated than linear SDOF structures. Initially, the algorithm was extended to linear MDOF structures. Although, the development of the algorithm for MDOF structures was relatively straightforward, during testing of the algorithm, it was found that prediction of the response by ARMA models can not be done as was done for SDOF case. In the SDOF case each of the two components of the state vector (i.e. displacement and velocity) was treated separately as an ARMA stochastic process. However, applying the same approach to each component of the state vector of a MDOF structure did not yield satisfactory results in prediction of the response. Considering the whole state vector as a multi-variable ARMA stochastic vector process yielded the desired results in predicting the response a few steps ahead. In the second part of this phase, the algorithm was extended to non-linear MDOF structures. Since the algorithm had been developed based on the principle of superposition, it was not possible to directly extend the algorithm to non-linear systems. Instead, some generalized response was defined. Then credibility of the ARMA models in predicting the generalized response was verified. Based on this credibility, the algorithm was extended for non-linear MDOF structures. Also in phase II, the stability of a controlled MDOF structure was proved. Both internal and external stability of the system were described and verified. In phase III, some problems of special interest, i.e. soil-structure interaction and control time delay, were investigated and compensated for in the framework of the developed predictive optimal control. In first part of phase III soil-structure interaction was studied. The half-space solution of the SSI effect leads to a frequency dependent representation of the structure-footing system, which is not fit for control purpose. Consequently an equivalent frequency independent system was proposed and defined as a system whose frequency response is equal to the original structure -footing system in the mean squares sense. This equivalent frequency independent system then was used in the control algorithm. In the second part of this phase, an analytical approach was used to tackle the time delay phenomenon in the context of the predictive algorithm described in previous chapters. A generalized performance index was defined considering time delay. Minimization of the generalized performance index resulted into a modified version of the algorithm in which time delay is compensated explicitly. Unlike the time delay compensation technique used in the previous phases of this investigation, which restricts time delay to be an integer multiplier of the sampling period, the modified algorithm allows time delay to be any non-negative number. However, the two approaches produce the same results if time delay is an integer multiplier of the sampling period. For evaluating the proposed algorithm and comparing it with other algorithms, several numerical simulations were carried during the research by using MATLAB and its toolboxes. A few interesting results of these simulations are enumerated below: ARM A models are able to predict the response of both linear and non-linear structures to random inputs such as earthquakes. The proposed predictive optimal control based on ARMA models has produced better results in the context of reducing velocity, displacement, total energy and operational cost compared to classic optimal control. Proposed active control algorithm is very effective in increasing safety and comfort. Its performance is not affected much by errors in the estimation of system parameters (e.g. damping). The effect of soil-structure interaction on the response to control force is considerable. Ignoring SSI will cause a significant change in the magnitude of the frequency response and a shift in the frequencies of the maximum response (resonant frequencies). Compensating the time delay effect by the modified version of the proposed algorithm will improve the performance of the control system in achieving the control goal and reduction of the structural response.

Page generated in 0.0846 seconds