• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamiques multi-échelles de l'ADN-B / Multiscale B-DNA Dynamics

Ben imeddourene, Akli 21 December 2015 (has links)
L'étude de la dynamique intrinsèque de l'ADN-B permet de caractériser l'espace conformationnel exploré par cette macromolécule. Cette dynamique, qui dépend de la séquence, est un facteur clé dans les mécanismes d'interaction avec les protéines, l'ADN étant plus ou moins prédisposé à s'adapter à son partenaire. Lors de cette thèse, nous avons sondé la dynamique de l'ADN à deux échelles de temps, en nous basant sur l'étude de quatre dodécamères par Résonance Magnétique Nucléaire (RMN). Nous nous sommes d'abord intéressés à la dynamique des groupements phosphates, qui correspondent à des mouvements rapides (picoseconde-nanoseconde). Nous avons ainsi confirmé l'effet de la séquence dinucléotidique sur cette dynamique, qui peut être prédit et quantifié. Nous avons également mis en lumière pour la première fois l'étroite inter-dépendance qui existe entre déplacements chimiques du phosphore, distances internucléotides et constantes de couplage dipolaire résiduel. L'interprétation de ces observables RMN en termes de conformations des phosphates, de paramètres hélicoïdaux et de taille des sillons, montre qu'en fait ces couplages reflètent la mécanique intrinsèque de l'ADN en solution. En interfaçant ces résultats avec l'effet de séquence observé sur la dynamique des phosphates, il est aussi possible de saisir de quelle façon la conformation moyenne de la double hélice et l'espace conformationnel associé sont modulés par la séquence au niveau dinucléotidique. Enfin, des dynamiques moléculaires réalisées avec les très récents champs de force CHARMM36 et Parmbsc0ezOLI, confrontées aux données expérimentales, ont permis d'apprécier le réalisme croissant des ADN simulés et ont aidé à préciser des éléments de la dynamique qui échappent à l'expérience. Le deuxième volet de cette thèse a porté sur les mouvements de l'ADN se produisant à l'échelle de la milliseconde, encore très peu étudiés. Nous avons mis au point des expériences de dispersion-relaxation qui ont apporté la preuve de l’existence d’un échange conformationnel d'un type totalement nouveau. Cet échange ne semble apparaitre que sur un type particulier de séquence, riche en A:T. Certaines régions de l’ADN, probablement spécifiques, peuvent ainsi localement évoluer vers une forme très faiblement peuplée, dont la structure détaillée reste à caractériser. L'ensemble de ces résultats offre un panorama des capacités dynamiques de l'ADN, dépendantes de la séquence, et ouvre ainsi de nombreuses perspectives vers une meilleure compréhension des mécanismes qui guident la formation des complexes ADN-protéines. / The study of B-DNA intrinsic dynamics enables to characterize the conformational landscape explored by this macromolecule. Indeed, binding of DNA to proteins is modulated by subtle sequence-dependent variations inherent to the dynamics of free DNA, which facilitate or disfavor the structural fit with cognate partners.In this thesis, the DNA dynamics was investigated at two time-scales, on the basis of the Nuclear Magnetic Resonance (NMR) study of four dodecamers. First, we examined the fast dynamics (pico-nanosecond) of phosphate linkages. We confirmed that the dinucleotide sequence modulates the backbone dynamics, an effect that can be quantified and predicted. Then, our experimental data enabled to establish that phosphorus chemical shifts, internucleotide distances and residual dipolar couplings constants are closely correlated. The translation of the NMR observables in terms of phosphate conformations, helicoidal parameters and minor groove dimension, allowed the structural interpretation of the couplings and led to the first coherent description of the intrinsic DNA mechanics in solution. Owing our knowledge of the effect of the sequence on the backbone behavior, it is now possible to understand how the DNA shape and the associated conformational landscape are modulated at the dinucleotide level. Finally, the performance of molecular dynamics (MD) simulations with the recent force-fields Parmbsc0εζOLI and CHARMM36 was tested extensively against our NMR data. We found impressive progress towards a realistic representation of DNA, despite residual shortcomings. This advance allowed to reveal new aspects of the DNA dynamics, which cannot be assessed from experiments.The second part of this thesis focused on slow motions in B-DNA, which are still largely under-investigated. Using and developing sophisticated relaxation-dispersion NMR experiments, we demonstrated the existence of a new conformational exchange at the millisecond time-scale, which seems to only occur in a particular type of sequence, A:T rich. Thus, in addition to the familiar structural patterns that are the signature of the B double helix, some short DNA regions, likely specific, are able to explore another conformational state, weakly populated, whose detailed structure still needs to be characterized.Overall, these results provide original insights on the DNA dynamic repertoire, sequence-dependent, and open the way towards a better understanding of the mechanisms underlying the formation of DNA-protein complexes.

Page generated in 0.0815 seconds