• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A smart grid ready building energy management system based on a hierarchical model predictive control. / Développement d'un gestionnaire énergétique du bâtiment compatible avec le réseau intelligent

Lefort, Antoine 02 April 2014 (has links)
L’intégration des énergies renouvelables produites par un bâtiment et les réseaux de fourniture, qui sont amenés à proposer des tarifications et des puissances disponibles variables au cours de la journée, entraînent une grande variabilité de la disponibilité de l’énergie. Mais les besoins des utilisateurs ne sont pas forcément en accord avec cette disponibilité. La gestion de l’énergie consiste alors à faire en sorte que les moments de consommation des installations coïncident avec les moments où celle-ci est disponible. Notre objectif a été de proposer une stratégie de commande prédictive, distribuée et hiérarchisée, pour gérer efficacement l’énergie de l’habitat. Les aspects prédictifs de notre approche permettent d’anticiper les besoins et les variations de la tarification énergétique. L’aspect distribué va permettre d’assurer la modularité de la structure de commande, pour pouvoir intégrer différents usages et différentes technologies de manière simple et sans faire exploser la combinatoire du problème d’optimisation résultant. / Electrical system is under a hard constraint: production and consumption must be equal. The production has to integrate non-controllable energy resources and to consider variability of local productions. While buildings are one of the most important energy consumers, the emergence of information and communication technologies (ICT) in the building integrates them in smart-grid as important consumer-actor players. Indeed, they have at their disposal various storage capacities: thermal storage, hot-water tank and also electrical battery. In our work we develop an hierarchical and distributed Building Energy Management Systems based on model predictive control in order to enable to shift, to reduce or even to store energy according to grid informations. The anticipation enables to plan the energy consumption in order to optimize the operating cost values, while the hierarchical architecture enables to treat the high resolution problem complexity and the distributed aspect enables to ensure the control modularity bringing adaptability to the controller.
2

Hierarchical distributed predictive control. Application to the control of slab reheating furnace in the steel industry / Commande prédictive hiérarchisée. Application à la commande de fours de réchauffage sidérurgiques

Nguyen, Xuan Manh 18 May 2015 (has links)
Dans l'industrie sidérurgique, les fours de réchauffage sont les plus grands consommateurs d'énergie après les hauts fourneaux. Réduire leur consommation énergétique est donc la préoccupation majeure de la commande des fours. Dans un four de réchauffage, des brames d'acier sont chauffées en traversant successivement plusieurs zones, de la température ambiante à un profil de température homogène de 1250 °C en sortie du four, avant d’être laminées dans les laminoirs à chaud. La température de brames est contrôlée par une structure de commande hiérarchisée à deux niveaux (niveau 1 et 2).L'objectif de ces travaux est d'améliorer la performance du chauffage et donc de réduire la consommation énergétique du four via une stratégie de commande prédictive distribuée hiérarchisée sur les deux niveaux de commande. Une approche de commande prédictive distribuée est tout d’abord développée pour le niveau 1 afin de suivre les consignes de température de zone, prenant en compte les couplages entre les zones et induisant une moindre complexité d’implantation par rapport à une approche centralisée. L’implantation industrielle a permis une amélioration significative de la précision du suivi de température et une réduction de la consommation d'énergie de 3%. Une deuxième étape propose l’élaboration de la commande prédictive hiérarchisée du niveau 2 afin, à partir de la consigne de température de brame, de déterminer les consignes de température optimales des zones en se fondant sur un modèle de transfert thermique du four. Les résultats de simulation, comparés aux données industrielles, montrent une réduction de la consommation énergétique de 5% et une meilleure qualité de chauffage des brames. L’approche précédente est enfin étendue pour prendre en compte et optimiser le cadencement des brames afin d’augmenter la productivité du four. La simulation montre une augmentation potentielle de productivité du four de 15 tonnes par heure tout en améliorant la qualité de chauffage des brames. / In steel industry, reheating furnaces are the biggest energy consumers after blast furnaces. As a result, reduction of energy consumption is the major concern of furnace control. In a walking-beam slab reheating furnace, steel slabs are heated by moving through successive zones from ambient temperature to a homogenous temperature profile of 1250°C at the furnace exit, to be rolled subsequently in the hot rolling mills. Temperature of slabs is controlled mainly by a two-level hierarchical structure, so called level 1 and level 2.The aim of this thesis is to improve the heating performance and consequently to reduce the energy consumption of the furnace by using hierarchical distributed model predictive control (MPC) strategy for both levels. In a first step, distributed model predictive controllers are developed for the level 1 in order to track zone temperature set-points. The distributed feature of the control law enables to consider coupling effects between zones while reducing the computation complexity compared to a complete centralized approach. The industrial results showed significant improvement on temperature tracking accuracy and an energy consumption reduction of 3%. In a second step, the hierarchical MPC is constructed for the level 2 in order to determine the optimal zones temperature setpoint from the slab temperature setpoint, based on a numerical heat transfer model of the furnace. The simulation results obtained with this strategy compared against industrial data show an energy consumption reduction of 5% and a better heating quality. The previous structure is finally extended to take into account and optimize the scheduling of the slabs within the MPC level 2 in order to increase productivity of the considered furnace. The simulation shows a potential increase of productivity of the furnace of 15 tons per hour while improving the slab heating quality.
3

Hierarchical distributed predictive control. Application to the control of slab reheating furnace in the steel industry / Commande prédictive hiérarchisée. Application à la commande de fours de réchauffage sidérurgiques

Nguyen, Xuan Manh 18 May 2015 (has links)
Dans l'industrie sidérurgique, les fours de réchauffage sont les plus grands consommateurs d'énergie après les hauts fourneaux. Réduire leur consommation énergétique est donc la préoccupation majeure de la commande des fours. Dans un four de réchauffage, des brames d'acier sont chauffées en traversant successivement plusieurs zones, de la température ambiante à un profil de température homogène de 1250 °C en sortie du four, avant d’être laminées dans les laminoirs à chaud. La température de brames est contrôlée par une structure de commande hiérarchisée à deux niveaux (niveau 1 et 2).L'objectif de ces travaux est d'améliorer la performance du chauffage et donc de réduire la consommation énergétique du four via une stratégie de commande prédictive distribuée hiérarchisée sur les deux niveaux de commande. Une approche de commande prédictive distribuée est tout d’abord développée pour le niveau 1 afin de suivre les consignes de température de zone, prenant en compte les couplages entre les zones et induisant une moindre complexité d’implantation par rapport à une approche centralisée. L’implantation industrielle a permis une amélioration significative de la précision du suivi de température et une réduction de la consommation d'énergie de 3%. Une deuxième étape propose l’élaboration de la commande prédictive hiérarchisée du niveau 2 afin, à partir de la consigne de température de brame, de déterminer les consignes de température optimales des zones en se fondant sur un modèle de transfert thermique du four. Les résultats de simulation, comparés aux données industrielles, montrent une réduction de la consommation énergétique de 5% et une meilleure qualité de chauffage des brames. L’approche précédente est enfin étendue pour prendre en compte et optimiser le cadencement des brames afin d’augmenter la productivité du four. La simulation montre une augmentation potentielle de productivité du four de 15 tonnes par heure tout en améliorant la qualité de chauffage des brames. / In steel industry, reheating furnaces are the biggest energy consumers after blast furnaces. As a result, reduction of energy consumption is the major concern of furnace control. In a walking-beam slab reheating furnace, steel slabs are heated by moving through successive zones from ambient temperature to a homogenous temperature profile of 1250°C at the furnace exit, to be rolled subsequently in the hot rolling mills. Temperature of slabs is controlled mainly by a two-level hierarchical structure, so called level 1 and level 2.The aim of this thesis is to improve the heating performance and consequently to reduce the energy consumption of the furnace by using hierarchical distributed model predictive control (MPC) strategy for both levels. In a first step, distributed model predictive controllers are developed for the level 1 in order to track zone temperature set-points. The distributed feature of the control law enables to consider coupling effects between zones while reducing the computation complexity compared to a complete centralized approach. The industrial results showed significant improvement on temperature tracking accuracy and an energy consumption reduction of 3%. In a second step, the hierarchical MPC is constructed for the level 2 in order to determine the optimal zones temperature setpoint from the slab temperature setpoint, based on a numerical heat transfer model of the furnace. The simulation results obtained with this strategy compared against industrial data show an energy consumption reduction of 5% and a better heating quality. The previous structure is finally extended to take into account and optimize the scheduling of the slabs within the MPC level 2 in order to increase productivity of the considered furnace. The simulation shows a potential increase of productivity of the furnace of 15 tons per hour while improving the slab heating quality.

Page generated in 0.0934 seconds