• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis, structure, and mechanical properties of lead- and zinc-copper borate glasses / Synthèse, structure et propriétés mécaniques des verres borates de cuivre et de plomb, et des verres borates de cuivre et de zinc

Yao, Zhao Yue 24 February 2016 (has links)
Le but de ce travail est d'étudier l'effet de la teneur en cuivre et de la valence des atomes de cuivre sur la structure et les propriétés mécanique du verre. Des verres de zinc- et plomb- cuivre borate ont été étudiés. Les changements structurels avec le remplacement de PbO ou ZnO par CuO sont observés par réflectance infrarouge et Raman. L'état d'oxydation, l'environnement du site et la liaison caractéristique d'ions de cuivre ont été étudiés par spectroscopie optique et de résonance de spin électronique. Les propriétés mécaniques ont été déterminées et corrélées à la structure du verre et à sa composition, en mettant l'accent sur les propriétés élastiques, le comportement d'indentation (dureté et micro-fissures), la ténacité et la dépendance à la température de l'élasticité. Le cuivre a une tendance à stabiliser le bore en coordinence trigonale et donne une structure de type métaborate plus homogène. L'ajout d'ions de cuivre au verre métaborate améliore les performances mécaniques (modules d'élasticité et dureté), et diminue la sensibilité à la température ainsi que le taux de ramollissement des verres au plomb. Toutefois, l'ajout d'ions de cuivre dans les verres au zinc a des effets opposés sur ces propriétés. Les changements chimiques à la surface des verres de borates de cuivre et de zinc après traitement thermique sont également étudiés. L'étude par nanoindentation et par rayage montre que la couche cristallisée améliore la résistance mécanique de la surface du verre. / The aim of this work is to study the effect of copper content and copper valence on the structural and mechanical properties of glass. Zinc- and lead- copper borate glasses were studied. Their structural changes with the substitution of CuO for ZnO or PbO are followed by Raman and reflectance infrared. The oxidation state, site environment and bonding characteristic of copper ions are studied by optical and electron spin resonance spectroscopy. The mechanical properties were determined and correlated to the glass structure and composition, with a particular emphasis on the elastic properties, sharp indentation behavior (hardness and micro-cracking), toughness and temperature dependence of elasticity. Copper tends to stabilize trigonal boron and gives a more homogeneous metaborate structure. Adding copper ions to the metaborate glass clearly improves the mechanical performance (elastic moduli and hardness), in the meantime decreases the temperature sensitivity and soften rate of lead borate glasses. However, adding copper ions in zinc borate glasses has opposite effects on these properties. The chemistry changes at zinc-copper-borate glass surface after heat-treatment are also studied. Investigation of the nanoindentation and scratch behavior show that the crystallized layer improves the mechanical resistant of glass surface.
2

Administrativní budova / Administrative building

Adámek, Lukáš January 2017 (has links)
The thesis deals with design of new administrative building, which supposed to serve as headquarters of midsize company with approximately 100 employees. Concept of the building with two overground floors and basement would meet requirements of growing corporate structure, company representation and modern working environment. Rectangular shape of the building allows future dispositional reconstruction and modernization. This layout allows to simplify solution of technical equipment. On the first floor of 870 square meters is facility for employees and clients located including technical background of the building as well. The underground floor is designed as storage, technical background and civil protection shelter. On the second floor are employees and management´s space located. The structural system of the building is composed of reinforced concrete skeletal structure casted in situ. Cladding of the underground section is designed as monolithic concrete walls. Upper part cladding is designed as ceramic masonry walls. The building facade is a combination of smooth aluminium panels, aluminium windows and glass facade with transparent and opaque parts. The main carousel entry is located in the glass facade part.
3

Entwicklung von Dünnglas-Kunststoff-Hybridplatten für das Bauwesen

Hänig, Julian 19 July 2023 (has links)
Moderne architektonische Fassadengestaltungen und Ganzglaskonstruktionen fordern immer häufiger entmaterialisiert wirkende Ansichten mit maximaler Transparenz für eine edle Erscheinung und einen hohen Grad an natürlicher Belichtung. Damit gehen große Spannweiten einher. Diese führen zu stark dimensionierten Glasaufbauten und bringen hohes Eigengewicht in die Konstruktion ein. Die Verfügbarkeit von Dünnglas in bautechnisch relevanten Abmessungen ermöglicht neue gewichtssparende Konstruktionsprinzipien und innovative Materialkombinationen. Dünnglas-Kunststoff-Hybridplatten bestehen aus einem leichten transparenten Kunststoffkern mit außenliegenden kratzbeständigen und dauerhaften Deckschichten aus Dünnglas. Sie bieten eine hohe Steifigkeit, Dauerhaftigkeit und volle Transparenz bei geringem Eigengewicht. Die Aushärtung der Ausgangskomponenten des Kunststoffkerns erfolgt direkt zwischen den Deckschichten und erzeugt dadurch einen vollflächigen Verbund zwischen Glas und Kunststoff ohne zusätzliche Zwischenschichten. Im Bauwesen sind Dünnglas-Kunststoff-Hybridplatten bislang unbekannt. Es liegen weder ausreichend Kenntnisse zu den Material- und Verbundeigenschaften vor noch sind die Eigenschaften als Bauprodukt entsprechend den hohen strukturellen und sicherheitstechnischen Anforderungen sowie den Ansprüchen an die Dauerhaftigkeit und an die optischen Eigenschaften nachgewiesen. Darüber hinaus fehlen konkrete Verbindungskonzepte zur Integration in das Bauwesen, um das Leichtbaupotenzial für entmaterialisiert wirkende transparente Konstruktionen auszunutzen. Im Rahmen dieser Arbeit werden erstmals Dünnglas-Kunststoff-Hybridplatten als innovatives Leichtbauprodukt systematisch untersucht und in das Bauwesen eingeordnet. Experimentelle und numerische Untersuchungen charakterisieren die Material- und Verbundeigenschaften mit zwei, am Markt verfügbaren, Kunststoffkernmaterialien – Polymethylmethacrylat (PMMA) und Polyurethan (PU), die jeweils für ein unterschiedliches Eigenschaftsspektrum stehen. Darüber hinaus wird zur Umsetzung maximaler Transparenz eine materialgerechte Verbindungstechnik entwickelt und deren mechanische Tragfähigkeiten charakterisiert. Zunächst werden in experimentellen Kleinteilprüfungen die thermophysikalischen und mechanischen Kennwerte der reinen Kunststoffkernmaterialien für die Beschreibung des Tragverhaltens im Verbund ermittelt. Anhand der Ergebnisse werden das PMMA als steifes, dauerhaftes, aber sprödes Material und das PU als vergleichsweise flexibles, zähes Material charakterisiert. Die experimentellen Untersuchungen zum Verbundverhalten fokussieren sich auf die Anforderungen für den Einsatz im Bauwesen. Eine numerische Strukturanalyse erweitert die Ergebnisse zum Tragverhalten und klärt offengebliebene Fragestellungen zum thermischen Ausdehnungsverhalten. Die Ergebnisse zeigen, dass mit Dünnglas-Kunststoff-Hybridplatten ein effizientes Tragverhalten und eine signifikante Gewichtsreduktion gegenüber herkömmlichem monolithischem Glas und Verbundglas erreicht wird. Anhand der spezifizierten Verbundeigenschaften werden resultierende Anwendungspotenziale entsprechend der Materialkombination abgeleitet. Die weiterführende Entwicklung einer tragfähig in den Kunststoffkern integrierten Verbindungstechnik bietet innovative Anbindungsmöglichkeiten für Dünnglas-Kunststoff-Hybridplatten im Strukturleichtbau. Die Funktionsweise wurde anhand eines Konstruktionsbeispiels auf der „glasstec 2022“ demonstriert. Die vorliegende Arbeit beinhaltet eine strukturierte Kennwertsammlung zur erstmaligen ingenieurmäßigen Beschreibung des Material- und Verbundverhaltens von Dünnglas-Kunststoff-Hybridplatten mit zwei unterschiedlichen Kunststoffkernmaterialien. Die Materialkombination aus Dünnglas und PMMA-Kunststoffkern erzielt die größte Materialeffizienz für eine effektive Gewichtsreduktion und erfüllt die grundlegenden Anforderungen aus dem Bauwesen. Anhand der weiterführend entwickelten konstruktiven Verbindungstechnik wird ein breiter Anwendungsbereich erschlossen. Mit den Ergebnissen dieser Arbeit werden somit die Grundlagen für die Einführung als Bauprodukt und für eine gewichtssparende Konstruktionsweise zur Umsetzung maximaler Transparenz geschaffen.:1 Einleitung 2 Grundlagen 3 Dünnglas-Kunststoff-Hybridplatten 4 Materialcharakterisierung Kunststoffkern 5 Verbundverhalten 6 Numerische Strukturanalyse 7 Einordnung in das Bauwesen 8 Konstruktive Verbindungstechnik 9 Konstruktionsbeispiel und Empfehlungen 10 Zusammenfassung und Ausblick 11 Literatur / Modern façade designs and all-glass construction are increasingly calling for dematerialisation and maximum transparency for a sophisticated appearance and a high degree of natural lighting. This is accompanied by large glass spans leading to increasing thickness of glass panels that introduce a high dead load into the supporting structure. The availability of thin glass in architecturally relevant dimensions permits new lightweight design principles and innovative material combinations. Innovative thin glass-plastic-composite panels consist of a lightweight and transparent polymeric interlayer core with scratch-resistant and durable cover layers of thin glass. They offer high stiffness, durability and full transparency at a low specific weight. The raw components of the polymer core are directly cured between the cover layers resulting in a chemical bond between glass and polymer over the entire surface without the need for additional interlayers. The thin glass-plastic-composite panels are currently unknown in the building industry. There is a lack of knowledge about the material and its composite behaviour. It has not been verified as a building product in accordance with the high structural and safety requirements as well as the requirements for durability and optical properties. In order to employ the lightweight design potential for dematerialised and transparent construction suitable for the building industry, there is a need for specific and material-appropriate connection techniques. In the context of this thesis, the novel thin glass-plastic-composite panels are systematically investigated in order to assess them as an innovative lightweight product. For the first time, they are classified in detail for application in the building industry. Material and composite properties using two different polymeric interlayer core materials – polymethyl methacrylate (PMMA) and polyurethane (PU) – are characterised by means of experimental and numerical investigations. Moreover, to achieve maximum transparency, a material-specific connection technique is developed and a wide range of mechanical load-bearing capacities are specified. First of all, the thermophysical and mechanical parameters of the pure polymer core materials are determined in experimental small part tests for the description of the composite load-bearing behaviour. The results identify the PMMA as a stiff, durable but brittle material and the PU as a fairly flexible, viscoelastic material. The investigations on the composite behaviour focus on the demands for use in the building industry and include experimental tests on the durability, the adhesion, the composite load-bearing behaviour as well as the response to hard and soft body impacts. A numerical analysis extends the results of experimental investigations on the structural load-bearing behaviour and examines the thermal expansion behaviour. The results indicate that the new material combination achieves a highly efficient structural load-bearing behaviour and a significant weight reduction compared to conventional monolithic and laminated glass. Application possibilities are derived based on the observed interlayer core material and composite characteristics. Further development of a connection technique as an integrated design into the polymeric interlayer core offers wide-ranging concepts of connecting thin glass-plastic-composite panels. Its functionality and practicability have been demonstrated in a construction prototype exhibited at “glasstec 2022” fair. The present work contains a well-structured material dataset to describe the material and composite behaviour of thin glass-plastic-composite panels comprehensively with two different polymeric interlayer core materials in engineering methodology. The material combination of thin glass and PMMA interlayer core achieves outstanding material efficiency with an effective weight reduction and fulfils the general requirements for application in building industry. A wide range of applications is facilitated thanks to the further development of a slim and integrated structural connection technique. The results of this work provide the framework for the introduction of a new lightweight building product with an innovative structural design to realise maximum transparency of façades and all-glass structures.:1 Einleitung 2 Grundlagen 3 Dünnglas-Kunststoff-Hybridplatten 4 Materialcharakterisierung Kunststoffkern 5 Verbundverhalten 6 Numerische Strukturanalyse 7 Einordnung in das Bauwesen 8 Konstruktive Verbindungstechnik 9 Konstruktionsbeispiel und Empfehlungen 10 Zusammenfassung und Ausblick 11 Literatur

Page generated in 0.0821 seconds