Spelling suggestions: "subject:"featurepreserving model 3reduction"" "subject:"featurepreserving model coeduction""
1 |
Computationally Driven Algorithms for Distributed Control of Complex SystemsAbou Jaoude, Dany 19 November 2018 (has links)
This dissertation studies the model reduction and distributed control problems for interconnected systems, i.e., systems that consist of multiple interacting agents/subsystems. The study of the analysis and synthesis problems for interconnected systems is motivated by the multiple applications that can benefit from the design and implementation of distributed controllers. These applications include automated highway systems and formation flight of unmanned aircraft systems.
The systems of interest are modeled using arbitrary directed graphs, where the subsystems correspond to the nodes, and the interconnections between the subsystems are described using the directed edges. In addition to the states of the subsystems, the adopted frameworks also model the interconnections between the subsystems as spatial states. Each agent/subsystem is assumed to have its own actuating and sensing capabilities. These capabilities are leveraged in order to design a controller subsystem for each plant subsystem. In the distributed control paradigm, the controller subsystems interact over the same interconnection structure as the plant subsystems.
The models assumed for the subsystems are linear time-varying or linear parameter-varying. Linear time-varying models are useful for describing nonlinear equations that are linearized about prespecified trajectories, and linear parameter-varying models allow for capturing the nonlinearities of the agents, while still being amenable to control using linear techniques. It is clear from the above description that the size of the model for an interconnected system increases with the number of subsystems and the complexity of the interconnection structure. This motivates the development of model reduction techniques to rigorously reduce the size of the given model. In particular, this dissertation presents structure-preserving techniques for model reduction, i.e., techniques that guarantee that the interpretation of each state is retained in the reduced order system. Namely, the sought reduced order system is an interconnected system formed by reduced order subsystems that are interconnected over the same interconnection structure as that of the full order system. Model reduction is important for reducing the computational complexity of the system analysis and control synthesis problems.
In this dissertation, interior point methods are extensively used for solving the semidefinite programming problems that arise in analysis and synthesis. / Ph. D. / The work in this dissertation is motivated by the numerous applications in which multiple agents interact and cooperate to perform a coordinated task. Examples of such applications include automated highway systems and formation flight of unmanned aircraft systems. For instance, one can think of the hazardous conditions created by a fire in a building and the benefits of using multiple interacting multirotors to deal with this emergency situation and reduce the risks on humans. This dissertation develops mathematical tools for studying and dealing with these complex systems. Namely, it is shown how controllers can be designed to ensure that such systems perform in the desired way, and how the models that describe the systems of interest can be systematically simplified to facilitate performing the tasks of mathematical analysis and control design.
|
Page generated in 0.1134 seconds