• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • Tagged with
  • 10
  • 10
  • 10
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, development and validation of tubular constructs for regenerative medicine

Pien, Nele 30 November 2022 (has links)
Les lésions, les maladies et les dysfonctionnements des organes tubulaires représentent un défi unique pour les bio-ingénieurs et les cliniciens. Une approche multidisciplinaire doit être appliquée pour réussir à développer des organes fonctionnels issus de l'ingénierie tissulaire (TE). Dans la recherche actuelle concernant la fabrication d'organes tubulaires fonctionnels, il manque un lien qui se concentre sur la corrélation entre (i) les exigences mécaniques et biologiques de la conception de l'échafaudage dictées par la structure anatomique et les fonctions physiologiques, (ii) le processus de fabrication (y compris la sélection des matériaux et la technique de traitement) et (iii) les propriétés mécaniques et biologiques résultantes de l'organe tubulaire TE développé. Par conséquent, le présent doctorat vise à relever certains des défis actuellement rencontrés dans l'ingénierie tissulaire et la médecine régénérative, et plus particulièrement dans la réparation des tendons et la modélisation des parois vasculaires. À cette fin, des biomatériaux spécifiques ont été conçus et caractérisés, et de multiples techniques de fabrication des biomatériaux ont été évaluées. Dans une première partie de cette thèse, des nouveaux polymères polyvalents photoréticulables à base d'uréthane (AUP) ont été développés, ainsi que leur mise en œuvre comme matériaux de départ pour le développement d'échafaudages tubulaires. Parce que chaque tissu a ses propres exigences mécaniques et biologiques, et parce que chaque technique de traitement a ses propres défis spécifiques, une boîte à outils de AUPs a été proposée. Des AUPs basés sur un backbone de poly(éthylène glycol) (PEG) et un backbone de poly(ε-caprolactone) (PCL) avec différentes masses molaires ont été synthétisés. Les AUPs ont montré une large gamme de propriétés physiques et mécaniques, couvrant les propriétés de nombreux tissus et les rendant idéales pour la médecine régénérative d'un point de vue mécanique. En outre, les AUPs développés ont permis une réticulation UV efficace à l'état solide, ouvrant la voie à diverses possibilités de techniques de fabrication, notamment l'électrospinning en solution (SES), l'impression 3D par extrusion (3DP) et l'électrowriting en fusion (MEW). Une des possibilités de technique de fabrication mentionnées ci-dessus se trouve dans le MEW. Actuellement, l'un des défis associés à l'utilisation du MEW est la disponibilité limitée de matériaux compatibles. Par conséquent, dans cette thèse de doctorat, la MEW a été étudiée en tant que technique de fabrication émergente pour transformer les AUPs développés en constructions tubulaires avec une architecture prédéfinie et présentant des propriétés mécaniques réglables. Une deuxième technique de fabrication choisie pour évaluer le potentiel des AUP développés est le SES. L'une des applications biomédicales possibles des constructions tubulaires en médecine régénérative est la réparation des tendons. Afin de surmonter les défis actuellement rencontrés dans la réparation des tendons, une combinaison d'une approche mécanique (par la conception du matériau et de l'échafaudage) et biologique (par des médicaments anti-adhésion et anti-inflammatoires) a été proposée dans cette thèse. Une autre application possible des constructions tubulaires en médecine régénérative peut être trouvée dans le domaine de la TE vasculaire. Dans cette thèse, l'utilisation d'un échafaudage synthétique tubulaire comme renfort pour des modèles à base de collagène a été exploitée dans le but d'obtenir les propriétés mécaniques requises pour la modélisation de la paroi vasculaire. Trois techniques de fabrications différentes (SES, 3DP et MEW) ont été évaluées pour le développement du renfort tubulaire en polymère. Outre l'utilisation d'un échafaudage de renforcement synthétique pour obtenir des propriétés mécaniques supérieures dans les modèles de parois vasculaires à base de collagène, une autre approche consiste à maintenir l'intégrité structurelle des échafaudages par réticulation chimique, physique ou enzymatique. Par conséquent, dans la deuxième partie de cette thèse, un collagène photoréticulable aux propriétés ajustables a été développé et comparé à l'étalon-or de la TE, à savoir la gélatine modifiée par le méthacrylamide. La distribution de fragments photoréticulables sur un squelette protéique peut affecter le comportement de réticulation d'un biomatériau, et donc aussi ses propriétés mécaniques et biologiques. Une connaissance approfondie à cet égard est essentielle pour les biomatériaux exploités dans l'ingénierie tissulaire et la médecine régénérative, afin de permettre la transposition de nouveaux biomatériaux fonctionnalisés du laboratoire au chevet du patient, compte tenu des contraintes réglementaires. C'est pourquoi l'analyse protéomique a été évaluée comme un outil permettant de mieux comprendre les modifications des biopolymères photoréticulables. Les recherches menées dans le cadre de cette thèse ont permis d'élargir la variété de biomatériaux, mais ont également permis de mieux comprendre certaines exigences critiques concernant la conception des biomatériaux, la technique de fabrication ainsi que les propriétés mécaniques et biologiques de l'échafaudage. / Injury, diseases and malfunctioning of tubular organs represent a unique challenge for bioengineers and clinicians. A multidisciplinary approach needs to be applied to successfully develop functional tissue engineered (TE) organs. In the current research regarding the regeneration of functional tubular organs, there is a missing link that focuses on the correlation between (i) the mechanical and biological requirements of the scaffold design dictated by the anatomical structure and physiological functions, (ii) the fabrication process (including material selection and processing technique) and (iii) the resulting mechanical and biological properties of the developed tubular TE organ. Therefore, the current PhD focuses on addressing some of the challenges currently encountered in tissue engineering and regenerative medicine, and more specifically, in tendon repair and vascular wall modeling. To this end, specific biomaterials were designed and characterized, and multiple biomaterial processing techniques were evaluated. In a first part of this PhD thesis, novel versatile photo-crosslinkable urethane-based polymers (AUPs) were developed, along with their implementation as starting materials for the development of tubular scaffolds. Because each tissue has its own mechanical and biological requirements, and because each processing technique has its own specific challenges, a toolbox of AUPs was proposed, taken into account the challenges and requirements while synthesizing and formulating the AUPs. AUPs based on a poly(ethylene glycol) (PEG) backbone versus a poly(ε-caprolactone) (PCL) backbone with different molar masses were synthesized (i.e. AUP PEG2k, 20k; AUP PCL530, 2k, 10k and 20k). The developed PEG- and PCL-based AUPs showed a broad range in physical and mechanical properties, covering the properties of many tissues and rendering them ideal for regenerative medicine from a mechanical perspective. Moreover, the developed AUPs enabled efficient UV-crosslinking in the solid state, paving the way towards various processing opportunities, including solution electrospinning (SES), extrusion-based 3D printing (3DP) and melt electrowriting (MEW). One of the above-mentioned processing opportunities can be found in MEW. At present, one of the challenges associated with the use of MEW is the limited availability of compatible materials. Therefore, in this PhD thesis, MEW was investigated as an emerging fabrication technique to process the developed AUPs into tubular constructs with a predefined architecture and exhibiting tunable mechanical properties. A second processing technique that was selected to evaluate the processing potential of the developed AUPs is SES. One possible biomedical application of tubular constructs in regenerative medicine can be found in tendon repair. In order to overcome the challenges currently encountered in tendon repair (i.e. insufficient mechanical properties along with adhesion and inflammatory issues), a combination of a mechanical (by material and scaffold design) and biological approach (by anti-adhesion and anti-inflammatory drugs) was proposed in this PhD thesis. Another possible application of tubular constructs in regenerative medicine can be found in the field of vascular TE. In this PhD thesis, the use of a tubular, synthetic scaffold as reinforcement for collagen-based models was exploited with the aim to achieve the required mechanical properties for vascular wall modeling. Three different processing techniques (i.e. SES, 3DP, and MEW) were evaluated for the development of the tubular, polymeric reinforcement. Apart from using a synthetic reinforcement scaffold to achieve superior mechanical properties in collagen-based vascular wall models, another approach includes maintaining the scaffolds's structural integrity by chemical, physical or enzymatic crosslinking. Therefore, in a second part in this PhD thesis, a photo-crosslinkable collagen (COL-MA) with tunable properties was developed and benchmarked against the gold standard in TE, being methacrylamide-modified gelatin (GEL-MA). The distribution of photo-crosslinkable moieties onto a protein backbone can affect a biomaterial's crosslinking behavior, and therefore also its mechanical and biological properties. A profound insight in this respect is essential for biomaterials exploited in tissue engineering and regenerative medicine to enable translation of novel, functionalized biomaterials from bench to bedside, given regulatory constraints and the need for perfectly defined and reproducible biomaterials. Therefore, proteomic analysis was evaluated as a tool to gain next level insights in photo-crosslinkable biopolymer modifications. The research conducted in this PhD thesis resulted in the expansion of the biomaterial portfolio, but also provided greater insight into some critical requirements regarding biomaterial design, the fabrication process, and the scaffold's resulting mechanical and biological properties.
2

Production d'échafaudages cellulaires épais pour applications de génie tissulaire via impression 3D d'encre fugitive

Collin, Simon January 2020 (has links)
Les travaux présentés dans ce mémoire s’inscrivent dans un projet visant à fabriquer des valves aortiques bioartificielles de remplacement pour des patients atteints de maladies cardiaques. La méthode globale étudiée consiste à produire un moule sacrificiel en sucre vitrifié produit par fabrication additive, prenant la forme d’une valve aortique et injecté avec un échafaudage cellulaire. En soumettant la valve moulée aux conditions physiologiques ressenties par une valve aortique réelle, il est espéré qu’une valve aortique fonctionnelle sera développée. Un des éléments importants dans ce procédé est l’échafaudage cellulaire. Puisque ce biomatériau contient des cellules vivantes, il doit être à l’abri de toutes sources de contamination. De plus, il doit permettre aux cellules de survivre et de sécréter de la matrice extracellulaire, dans le but d’éventuellement transformer l’échafaudage cellulaire en un tissu biologique fiable. Ce mémoire présente une technique de fabrication d’échafaudages cellulaires qui tient compte des enjeux liés à l’utilisation de cellules vivantes. Il s’agit d’une preuve de concept visant à s’intégrer au projet de valves aortiques bioartificielles. Afin de tester la méthode, une expérience in vitro de fabrication et de culture dynamique fut menée. Celle-ci démontra que cette méthode de fabrication fut adaptée au contexte de travail en environnement stérile, que les cellules ensemencées dans les spécimens furent distribuées de manière homogène, et que les moules en sucre vitrifié fabriqués par impression 3D ne causèrent pas de mortalité cellulaire dans ce contexte. Toutefois, des dommages mineurs furent observés après plusieurs semaines de culture, et les taux de viabilité cellulaire furent plus bas qu’attendu à cause d’un défaut au niveau de la perfusion des spécimens. Ainsi, la technique développée est prometteuse pour le projet de fabrication de valves aortiques, mais des améliorations doivent être apportées au niveau de la perfusion et du maintien de l’intégrité physique des tissus. / The work presented in this thesis is part of a project which aims at fabricating bioartificial aortic replacement valves for patients suffering from cardiac diseases. The global method studied to achieve this consists of fabricating sacrificial molds made of carbohydrate glass, produced by additive manufacturing, replicating the geometry of an aortic valve, and injected with a cellular scaffold. By exposing the molded valve to the physiological conditions a real aortic valve would experience, it is hoped that a functional aortic valve will be developed. One important aspect of this process is the cellular scaffold. Since this biomaterial contains live cells, it has to be isolated from all possible sources of contamination. Moreover, it has to favor cell survival, as well as extracellular matrix secretion, in order to eventually transform the scaffold into a reliable biological tissue. This thesis presents a fabrication technique for cellular scaffold that takes into account all the challenges linked to the use of live cells. It is a proof of concept with the aim of being included to the artificial aortic valve project. To validate this process and its aspects, an in vitro experiment of fabrication and dynamic culture was conducted. The results of this experiment showed that this method is adapted to the sterile work environment context, and that the cells seeded in the specimens were distributed homogeneously. This experience also demonstrated that the carbohydrate molds fabricated by additive manufacturing did not cause cell mortality in this context. However, minor damage was observed after several weeks of dynamic culture, and the cell viability rates were lower than expected because of suboptimal perfusion rates. This fabrication technique for cellular scaffolds is promising for the artificial aortic valves project, but improvements in terms of perfusion and preservation of physical integrity should be made.
3

Conception et validation d'un biomatériau hybride pour la régénération osseuse

Akkouch, Adil 18 April 2018 (has links)
Plus de 1 / Plus de 1.000.000 procédures chirurgicales et de nouveaux cas de déficiences squelettiques sont signalés chaque année. Les matériaux utilisés pour réparer les défauts osseux comprennent l'os autologue, les allogreffes, les ciments osseux, les métaux et les céramiques. Ces matériaux présentent de nombreux problèmes dont le risque de transmission de maladies, l'absence de biodégradation et d'ostéointégration. L'ingénierie tissulaire ralliant des cellules souches et un biomatériau compatible et biodégradable pourrait être une solution idéale pour améliorer la qualité de vie et le bien être de milliers de patients. Les objectifs de cette thèse sont (i) de produire un nouvel échafaudage s'approchant le plus possible de la trame d'un os humain; (ii) de démontrer l'efficacité des cellules souches dans la régénération de tissus osseux pour des applications cliniques; et (iii) de démontrer l'importance des facteurs de croissance comme les BMPs dans la régénération in vitro de tissus osseux. La réalisation du premier objectif nous a révélée qu'une combinaison de matériaux naturels comme le collagène et 1'hydroxy apatite avec un matériau synthétique le Poly acide (L-lactique-co-e-caprolactone) est un excellent choix puisque les propriétés mécaniques et biologiques de la nouvelle matrice sont comparables à celles de l'os natif. Les résultats du deuxième objectif nous démontrent que la combinaison de notre nouvel échafaudage composite avec des cellules souches pulpaires favorise la croissance, la différenciation et la formation de nodules osseuses. Ces paramètres sont favorisés par l'ajout de facteurs ostéogéniques comme la BMP-2. Nos travaux démontrent qu'une des meilleures possibilités pour régénérer in vitro un tissu osseux consiste à regrouper (i) un échafaudage de choix, composé de matériaux naturels et synthétiques, (ii) des cellules souches comme les cellules pulpaires et (iii) des facteurs ostéogéniques comme la BMP-2. Nos résultats démontrent de façon tangible l'efficacité d'une telle combinaison pour la régénération in vitro de tissus osseux. Ces résultats, particulièrement originaux, ouvrent la voie à des applications cliniques dans le domaine des substituts osseux. Des études in vivo devraient confirmer la pertinence d'une telle combinaison et son applicabilité en clinique pour combler les pertes osseuses chez les milliers de canadiens chaque année. / Over 1,000,000 surgical procedures and new cases of skeletal deficiencies are reported each year. Presently, materials used to repair bone defects include autogenous and allogenous bones, non-degradable bone cement, metals and ceramics. Allogenic tissues and materials used for bone reconstructions are associated with significant problems, such as availability, risk of transmission of diseases, non-biodegradable nature and the lack of cohesive attachment at bone-prosthesis interface. Bone tissue engineering therefore represents a new direction toward bone regeneration. The use of porous composite scaffolds in bone tissue engineering is a promising approach for bone regeneration and healing. Combining those composite materials with appropriate potentially osteogenic cell types is expected to further promote bone regeneration. The objectives of the present study are (i) to design a composite scaffold that includes natural materials such as collagen and hydroxy apatite, and synthetic material such biodegradable elastic poly(L-lactide-co-E-caprolactone) (PLCL) copolymer, (ii) investigate the usefulness of dental pulp stem cells to engineer bone tissue and (iii) demonstrate the efficacy of growth factor such as BMPs on bone tissue engineering. Using different chemical, biochemical, cell biology and molecular biology techniques, we were able to design a porous, 3D composite scaffold. This was non-toxic, biocompatible allowing osteoblast adhesion and growth. We were also able to extract dental pulp stem cells, differentiate them onto osteoblast. The cells, when cultured in the composite scaffold were able to adhere, proliferate and form bone nodules. It is important to notice that the use of BMP-2 promoted bone tissue formation in vitro. Taken together, these data suggested that combination of appropriate scaffold with stem cells and growth factors is an innovative strategy to engineer bone. It highlights the potential use of engineered biomimetic scaffolds in the bone tissue repair process.
4

Mechanical behavior of absorbable iron foams with hollow struts for bone scaffolding applications

Alavi, Reza 30 August 2022 (has links)
Jusqu'à il y a quelques années, chaque année, aux États-Unis, plus de 500 000 personnes devaient réparer leurs défauts osseux. Il a été prédit que le besoin de telles réparations doublerait aux États-Unis et dans le monde d'ici 2020. Les techniques de greffe osseuse sont couramment utilisées pour guérir de gros défauts osseux. Cependant, la greffe osseuse présente certains inconvénients tels que l'infection, la douleur, la morbidité et le manque de site donneur. L'échafaudage osseux est considéré comme une approche alternative pour guérir les défauts osseux sans complications liées à la greffe. Les échafaudages osseux sont considérés comme des implants temporaires, car après la formation de nouveaux tissus, leur présence n'est plus nécessaire. Des métaux poreux biodégradables (résorbables) ont été développés et étudiés en tant qu'échafaudages osseux temporaires. Ces structures poreuses fournissent un support mécanique et un espace biologique pour la régénération tissulaire. Ces implants se corrodent pendant le processus de régénération tissulaire et, idéalement, ils devraient disparaître une fois le processus de guérison terminé. Ainsi, aucune chirurgie secondaire pour les retirer ne serait nécessaire. Une tâche cruciale des échafaudages osseux résorbables est de fournir un support mécanique pour la formation de nouveaux tissus. Les échafaudages doivent conserver leur intégrité mécanique sans défaillance en raison des charges mécaniques appliquées à partir du milieu environnant. En revanche, en tant qu'implants orthopédiques, leur rigidité ne doit pas être supérieure à celle du tissu osseux environnant en raison du risque de stress shielding. Ainsi, la compréhension des facteurs influençant la réponse mécanique de l'échafaudage osseux lors de la dégradation et la prédiction de leurs propriétés mécaniques sont cruciales. La conception et la fabrication d'échafaudages résorbables sont un sujet d'intérêt pour les chercheurs. Des analyses détaillées qui expliquent les propriétés mécaniques post-corrosion des échafaudages métalliques résorbables en fonction de leurs caractéristiques architecturales post-corrosion font défaut dans la littérature. Ce projet de doctorat porte sur le comportement mécanique de la mousse de fer galvanisée à cellules ouvertes avec des entretoises creuses pour les applications d'échafaudage osseux. En particulier, les relations entre les propriétés structurales et mécaniques, les propriétés mécaniques après corrosion et les paramètres micro-architecturaux induits par la corrosion des mousses de fer ont été explorées. En outre, des modèles d'éléments finis idéalisés (mousse Kelvin) d'un témoin ainsi qu'un échantillon de mousse de fer corrodé ont été développés sur la base de mesures de tomographie micro-calculée et de modes de corrosion pour prédire la réponse mécanique post-corrosion de la mousse de fer (test in silico). La thèse comprend une introduction, trois chapitres contenant une revue approfondie de la littérature et les études menées pour le projet de doctorat, et une section Conclusion. Des données supplémentaires sur les études réalisées se trouvent en annexe. Dans l'introduction, un bref historique sur les échafaudages osseux, l'application de métaux poreux biodégradables (résorbables) dans les échafaudages, l'énoncé du problème, les objectifs de recherche, la stratégie de recherche et la nouveauté de cette recherche sont présentés. Le chapitre 1 contient une revue approfondie de la littérature sur les sujets pertinents au sujet de la thèse tels que l'application de métaux biodégradables comme implants temporaires, la fabrication et l'application de mousses métalliques résorbables comme échafaudages osseux ainsi que leurs propriétés mécaniques et de corrosion, temps de corrosion propriétés mécaniques dépendantes des échafaudages métalliques résorbables, approches de modélisation analytique et informatique pour prédire le comportement mécanique des mousses métalliques et modélisation informatique de la dégradation dans les métaux résorbables. Le chapitre 2 traite de la première étape du projet de doctorat qui était une étude sur les propriétés mécaniques des mousses de fer électrolytiques à cellules ouvertes avec entretoises creuses. Dans cette étude, des échantillons de mousses de fer aux propriétés architecturales différentes, c'est-à-dire la taille des alvéoles, l'épaisseur des branches et la taille des pores, ont subi des essais de compression mécanique et le rôle de leurs paramètres architecturaux ainsi que leur densité relative dans leurs différentes réponses à la compression (quasi-gradient élastique, élasticité et résistance à la compression) a été discuté. De plus, une modélisation par éléments finis des mousses Kelvin a été développée pour fournir une meilleure compréhension des effets de creux des entretoises sur les propriétés mécaniques de la mousse. Le chapitre couvre une introduction, la méthodologie, les résultats, la discussion et une section de conclusion. Le chapitre 3 traite des propriétés mécaniques post-corrosion et des configurations architecturales des mousses de fer à entretoises creuses. Les échantillons de mousse de fer ont subi des tests d'immersion dans une solution de Hanks jusqu'à 14 jours, suivis de tests de nettoyage et de compression mécanique. Les facteurs influençant les propriétés mécaniques de la mousse corrodée ont été explorés, c'est-à-dire la dégradation structurelle, les produits de corrosion adhérents et les changements micro-architecturaux au niveau des entretoises. une tomographie micro-calculée a été utilisée pour mesurer les paramètres architecturaux du contrôle et des mousses corrodées pendant 14 jours. Sur la base des mesures architecturales, des modèles d'éléments finis de mousse Kelvin ont été développés pour prédire la réponse mécanique des mousses corrodées. De plus, un nouveau modèle de mousse Kelvin a été développé pour prédire la réponse mécanique des mousses de fer corrodées sous corrosion homogène, le mécanisme de corrosion qui n'avait pas été observé dans les expériences. Enfin, les faits saillants les plus importants des études sont présentés dans la section Conclusion. Aussi, les limites et les bénéfices potentiels des résultats de ce projet pour les futurs travaux de recherche sont expliqués, et de nouvelles idées pour les futurs projets concernant le comportement mécanique des mousses métalliques résorbables sont proposées. / Up to a few years ago, every year, in the Unites States, more than 500,000 people needed to repair their bone defects. It was predicted that the need for such repairs would double in US and worldwide by 2020. Bone grafting techniques are commonly used to heal large bone defects. However, there are certain drawbacks with bone grafting such as infection, pain, morbidity and shortage of donor site. Bone scaffolding is considered as an alternative approach to heal bone defects without complications raised from grafting. Bone scaffolds are considered as temporary implants, since after the formation of new tissue, their presence is not needed anymore. Porous biodegradable (absorbable) metals have been developed and studied as temporary bone scaffolds. These porous structures provide mechanical support and biological space for tissue regeneration. These implants corrode during tissue regeneration process, and, ideally, they should disappear once the healing process ends. Thus, no secondary surgery to remove them would be needed. One crucial task for absorbable bone scaffolds is to provide mechanical support for new tissue formation. The scaffolds must keep their mechanical integrity without failing due to mechanical loads applied from the surrounding environment. On the other hand, as orthopedic implants, their stiffness should not be higher than the surrounding bone tissue due to the risk of stress shielding. Thus, understanding the influencing factors on the mechanical response of the bone scaffold during degradation and predicting their mechanical properties are crucial. Design and fabrication of absorbable scaffolds is a topic of interest for researchers. Detailed analyses that explain the post-corrosion mechanical properties of absorbable metal scaffolds based on their post-corrosion architectural features are lacking in the literature. This PhD project addresses the mechanical behavior of electroplated open cell iron foam with hollow struts for bone scaffolding applications. In particular, the structural-mechanical properties relationships, post-corrosion mechanical properties and the corrosion-induced micro-architectural parameters of the iron foams have been explored. In addition, idealized finite element models (Kelvin foam) of a control as well as a corroded iron foam specimen were developed based on micro-computed tomography measurements and corrosion modes to predict the post-corrosion mechanical response of the iron foam (in silico test). The thesis comprises an Introduction, three chapters containing a thorough literature review and the studies conducted for the PhD project, and a Conclusion section. Additional data about the performed studies are found in the Appendix. In the Introduction, a brief background on bone scaffolds, the application of porous biodegradable (absorbable) metals in scaffolding, problem statement, research objectives, research strategy, and the novelty of the research are presented. Chapter 1 contains a thorough literature review on the subjects relevant to the topic of the thesis such as the application of biodegradable metals as temporary implants, fabrication and application of absorbable metal foams as bone scaffolds as well as their mechanical and corrosion properties, corrosion-time dependent mechanical properties of absorbable metallic scaffolds, analytical and computational modelling approaches to predict the mechanical behavior of metal foams and computational modeling of degradation in absorbable metals. Chapter 2 discusses the first step of the PhD project which was a study on the mechanical properties of the electroplated open-cell iron foams with hollow struts. In this study, samples of iron foams with different architectural properties, i.e. cell size, branch-strut thickness and pore size, underwent mechanical compression tests and the role of their architectural parameters as well as their relative density in their different compressive response (quasi-elastic gradient, yield and compressive strength) was discussed. In addition, finite element modeling of Kelvin foams was developed to provide a better understanding of the strut hollowness effects on the foam mechanical properties. The chapter covers an introduction, the methodology, results, discussion, and a concluding section. Chapter 3 discusses the post-corrosion mechanical properties and architectural configurations of the iron foams with hollow struts. The iron foam samples underwent immersion tests in a Hanks' solution up to 14 days which were followed by cleaning and mechanical compression tests. The factors influencing the corroded foam mechanical properties were explored, i.e. structural degradation, adherent corrosion products and micro-architectural changes on the strut level. micro-computed tomography was employed to measure architectural parameters of the control and the 14-day corroded foams. Based on the architectural measurements, Kelvin foam finite element models were developed to predict the mechanical response of the corroded foams. Also, a new Kelvin foam model was developed to predict the mechanical response of the corroded iron foams under homogeneous corrosion, the corrosion mechanism which had not been observed in the experiments. Finally, the most important highlights of the studies are presented in the Conclusion section. Also, the limitations and the potential benefits of the results of this project for the future research works is explained, and new ideas for the future projects concerning the mechanical behavior of absorbable metal foams is proposed.
5

Fabrication par génie tissulaire d'un substitut de valve aortique

Jaguenaud, Morgane 20 April 2022 (has links)
Les maladies valvulaires sont un problème de santé majeur et grandissant. Les substituts pour remplacer les valves cardiaques disponibles présentement comportent plusieurs inconvénients, dont la prise de médicaments antirejets ou anticoagulants, ainsi que la calcification. De plus, ils ne sont pas adaptés pour les jeunes patients à cause de leur taille inadéquate et de l'impossibilité de croissance. L'objectif est de fabriquer une valve aortique vivante grâce une technique innovante de moulage de tissus biologiques produits par génie tissulaire, pour remédier à ces problèmes. Un moule en sucre vitrifié sous la forme de valve cardiaque à trois feuillets est fabriqué par impression 3D. Un mélange d'alginate (hydrogel biocompatible) et de cellules est coulé dans le moule et se gélifie. Le moule est ensuite dissout dans une solution aqueuse laissant place à la valve. Les objectifs du projet étaient de produire une valve fonctionnelle et de géométrie optimale mais exempte de cellules et d'étudier l'impact de l'alginate sur la viabilité cellulaire. Des modifications à la conception, l'impression et la recette d'alginate sans cellules ont été réalisées afin d'obtenir une valve avec peu de défauts et dont la résistance fut testée en bioréacteur. La littérature suggère qu'un haut pourcentage d'alginate est nocif pour les cellules. Une étude sur des disques d'alginate avec cellules fut réalisée pour évaluer cet impact. Ces disques ont été fabriqués en conditions stériles et cultivés pendant 24h ou sept jours. Des tests de viabilité ont montré que les pourcentages d'alginate étudiés n'avaient pas d'influence sur la viabilité cellulaire, validant l'utilisation de la concentration d'alginate pour la fabrication d'un substitut de valve aortique par génie tissulaire. À terme, l'alginate servira d'échafaudage pour les cellules qui produiront leurs propres tissus biologiques. Ces derniers remplaceront l'alginate qui se dégradera avec le temps, laissant place à une valve uniquement composée de tissus biologiques. / Heart valve disease is a major and growing health problem. The currently available heart valve substitutes have several drawbacks, including the use of immune-suppressors or anticoagulant medication, as well as calcification. In addition, they are not suitable for young patients because of their inadequate size and their inability to grow. The objective is to create a living aortic valve using an innovative tissue-engineering molding technique of biological tissue to address these issues. A vitrified sugar mold in the shape of a trileaflet heart valve is 3D printed. A mixture of alginate (a biocompatible hydrogel) and cells is poured and cast into the mold. Upon gelling of the alginate scaffold, the mold is then dissolved in an aqueous solution, leaving the alginate valve. The objectives of this project were to produce a perfect cell-free but functional and geometrically adequate aortic valve and to study the impact of alginate on cell viability. Modifications to the design, printing and recipe of the cell-free alginate were made to obtain a valve with few defects and which resistance was tested in a bioreactor. The literature suggests that a high percentage of alginate can be harmful to the cells. A study on cellular alginate discs was performed to evaluate this impact. These discs were produced under sterile conditions and were cultured for 24 hours or seven days. Viability tests showed that the alginate percentages tested had no influence on cell viability, validating the use of the alginate concentration to produce a tissue-engineered aortic valve substitute. Eventually, the alginate will be used as a scaffold for cells that will produce their own biological tissues. The latter will replace the alginate which will degrade over time, leaving a valve only composed of biological tissue.
6

Mechanical behavior of absorbable iron foams with hollow struts for bone scaffolding applications

Alavi, Reza 30 August 2022 (has links)
Jusqu'à il y a quelques années, chaque année, aux États-Unis, plus de 500 000 personnes devaient réparer leurs défauts osseux. Il a été prédit que le besoin de telles réparations doublerait aux États-Unis et dans le monde d'ici 2020. Les techniques de greffe osseuse sont couramment utilisées pour guérir de gros défauts osseux. Cependant, la greffe osseuse présente certains inconvénients tels que l'infection, la douleur, la morbidité et le manque de site donneur. L'échafaudage osseux est considéré comme une approche alternative pour guérir les défauts osseux sans complications liées à la greffe. Les échafaudages osseux sont considérés comme des implants temporaires, car après la formation de nouveaux tissus, leur présence n'est plus nécessaire. Des métaux poreux biodégradables (résorbables) ont été développés et étudiés en tant qu'échafaudages osseux temporaires. Ces structures poreuses fournissent un support mécanique et un espace biologique pour la régénération tissulaire. Ces implants se corrodent pendant le processus de régénération tissulaire et, idéalement, ils devraient disparaître une fois le processus de guérison terminé. Ainsi, aucune chirurgie secondaire pour les retirer ne serait nécessaire. Une tâche cruciale des échafaudages osseux résorbables est de fournir un support mécanique pour la formation de nouveaux tissus. Les échafaudages doivent conserver leur intégrité mécanique sans défaillance en raison des charges mécaniques appliquées à partir du milieu environnant. En revanche, en tant qu'implants orthopédiques, leur rigidité ne doit pas être supérieure à celle du tissu osseux environnant en raison du risque de stress shielding. Ainsi, la compréhension des facteurs influençant la réponse mécanique de l'échafaudage osseux lors de la dégradation et la prédiction de leurs propriétés mécaniques sont cruciales. La conception et la fabrication d'échafaudages résorbables sont un sujet d'intérêt pour les chercheurs. Des analyses détaillées qui expliquent les propriétés mécaniques post-corrosion des échafaudages métalliques résorbables en fonction de leurs caractéristiques architecturales post-corrosion font défaut dans la littérature. Ce projet de doctorat porte sur le comportement mécanique de la mousse de fer galvanisée à cellules ouvertes avec des entretoises creuses pour les applications d'échafaudage osseux. En particulier, les relations entre les propriétés structurales et mécaniques, les propriétés mécaniques après corrosion et les paramètres micro-architecturaux induits par la corrosion des mousses de fer ont été explorées. En outre, des modèles d'éléments finis idéalisés (mousse Kelvin) d'un témoin ainsi qu'un échantillon de mousse de fer corrodé ont été développés sur la base de mesures de tomographie micro-calculée et de modes de corrosion pour prédire la réponse mécanique post-corrosion de la mousse de fer (test in silico). La thèse comprend une introduction, trois chapitres contenant une revue approfondie de la littérature et les études menées pour le projet de doctorat, et une section Conclusion. Des données supplémentaires sur les études réalisées se trouvent en annexe. Dans l'introduction, un bref historique sur les échafaudages osseux, l'application de métaux poreux biodégradables (résorbables) dans les échafaudages, l'énoncé du problème, les objectifs de recherche, la stratégie de recherche et la nouveauté de cette recherche sont présentés. Le chapitre 1 contient une revue approfondie de la littérature sur les sujets pertinents au sujet de la thèse tels que l'application de métaux biodégradables comme implants temporaires, la fabrication et l'application de mousses métalliques résorbables comme échafaudages osseux ainsi que leurs propriétés mécaniques et de corrosion, temps de corrosion propriétés mécaniques dépendantes des échafaudages métalliques résorbables, approches de modélisation analytique et informatique pour prédire le comportement mécanique des mousses métalliques et modélisation informatique de la dégradation dans les métaux résorbables. Le chapitre 2 traite de la première étape du projet de doctorat qui était une étude sur les propriétés mécaniques des mousses de fer électrolytiques à cellules ouvertes avec entretoises creuses. Dans cette étude, des échantillons de mousses de fer aux propriétés architecturales différentes, c'est-à-dire la taille des alvéoles, l'épaisseur des branches et la taille des pores, ont subi des essais de compression mécanique et le rôle de leurs paramètres architecturaux ainsi que leur densité relative dans leurs différentes réponses à la compression (quasi-gradient élastique, élasticité et résistance à la compression) a été discuté. De plus, une modélisation par éléments finis des mousses Kelvin a été développée pour fournir une meilleure compréhension des effets de creux des entretoises sur les propriétés mécaniques de la mousse. Le chapitre couvre une introduction, la méthodologie, les résultats, la discussion et une section de conclusion. Le chapitre 3 traite des propriétés mécaniques post-corrosion et des configurations architecturales des mousses de fer à entretoises creuses. Les échantillons de mousse de fer ont subi des tests d'immersion dans une solution de Hanks jusqu'à 14 jours, suivis de tests de nettoyage et de compression mécanique. Les facteurs influençant les propriétés mécaniques de la mousse corrodée ont été explorés, c'est-à-dire la dégradation structurelle, les produits de corrosion adhérents et les changements micro-architecturaux au niveau des entretoises. une tomographie micro-calculée a été utilisée pour mesurer les paramètres architecturaux du contrôle et des mousses corrodées pendant 14 jours. Sur la base des mesures architecturales, des modèles d'éléments finis de mousse Kelvin ont été développés pour prédire la réponse mécanique des mousses corrodées. De plus, un nouveau modèle de mousse Kelvin a été développé pour prédire la réponse mécanique des mousses de fer corrodées sous corrosion homogène, le mécanisme de corrosion qui n'avait pas été observé dans les expériences. Enfin, les faits saillants les plus importants des études sont présentés dans la section Conclusion. Aussi, les limites et les bénéfices potentiels des résultats de ce projet pour les futurs travaux de recherche sont expliqués, et de nouvelles idées pour les futurs projets concernant le comportement mécanique des mousses métalliques résorbables sont proposées. / Up to a few years ago, every year, in the Unites States, more than 500,000 people needed to repair their bone defects. It was predicted that the need for such repairs would double in US and worldwide by 2020. Bone grafting techniques are commonly used to heal large bone defects. However, there are certain drawbacks with bone grafting such as infection, pain, morbidity and shortage of donor site. Bone scaffolding is considered as an alternative approach to heal bone defects without complications raised from grafting. Bone scaffolds are considered as temporary implants, since after the formation of new tissue, their presence is not needed anymore. Porous biodegradable (absorbable) metals have been developed and studied as temporary bone scaffolds. These porous structures provide mechanical support and biological space for tissue regeneration. These implants corrode during tissue regeneration process, and, ideally, they should disappear once the healing process ends. Thus, no secondary surgery to remove them would be needed. One crucial task for absorbable bone scaffolds is to provide mechanical support for new tissue formation. The scaffolds must keep their mechanical integrity without failing due to mechanical loads applied from the surrounding environment. On the other hand, as orthopedic implants, their stiffness should not be higher than the surrounding bone tissue due to the risk of stress shielding. Thus, understanding the influencing factors on the mechanical response of the bone scaffold during degradation and predicting their mechanical properties are crucial. Design and fabrication of absorbable scaffolds is a topic of interest for researchers. Detailed analyses that explain the post-corrosion mechanical properties of absorbable metal scaffolds based on their post-corrosion architectural features are lacking in the literature. This PhD project addresses the mechanical behavior of electroplated open cell iron foam with hollow struts for bone scaffolding applications. In particular, the structural-mechanical properties relationships, post-corrosion mechanical properties and the corrosion-induced micro-architectural parameters of the iron foams have been explored. In addition, idealized finite element models (Kelvin foam) of a control as well as a corroded iron foam specimen were developed based on micro-computed tomography measurements and corrosion modes to predict the post-corrosion mechanical response of the iron foam (in silico test). The thesis comprises an Introduction, three chapters containing a thorough literature review and the studies conducted for the PhD project, and a Conclusion section. Additional data about the performed studies are found in the Appendix. In the Introduction, a brief background on bone scaffolds, the application of porous biodegradable (absorbable) metals in scaffolding, problem statement, research objectives, research strategy, and the novelty of the research are presented. Chapter 1 contains a thorough literature review on the subjects relevant to the topic of the thesis such as the application of biodegradable metals as temporary implants, fabrication and application of absorbable metal foams as bone scaffolds as well as their mechanical and corrosion properties, corrosion-time dependent mechanical properties of absorbable metallic scaffolds, analytical and computational modelling approaches to predict the mechanical behavior of metal foams and computational modeling of degradation in absorbable metals. Chapter 2 discusses the first step of the PhD project which was a study on the mechanical properties of the electroplated open-cell iron foams with hollow struts. In this study, samples of iron foams with different architectural properties, i.e. cell size, branch-strut thickness and pore size, underwent mechanical compression tests and the role of their architectural parameters as well as their relative density in their different compressive response (quasi-elastic gradient, yield and compressive strength) was discussed. In addition, finite element modeling of Kelvin foams was developed to provide a better understanding of the strut hollowness effects on the foam mechanical properties. The chapter covers an introduction, the methodology, results, discussion, and a concluding section. Chapter 3 discusses the post-corrosion mechanical properties and architectural configurations of the iron foams with hollow struts. The iron foam samples underwent immersion tests in a Hanks' solution up to 14 days which were followed by cleaning and mechanical compression tests. The factors influencing the corroded foam mechanical properties were explored, i.e. structural degradation, adherent corrosion products and micro-architectural changes on the strut level. micro-computed tomography was employed to measure architectural parameters of the control and the 14-day corroded foams. Based on the architectural measurements, Kelvin foam finite element models were developed to predict the mechanical response of the corroded foams. Also, a new Kelvin foam model was developed to predict the mechanical response of the corroded iron foams under homogeneous corrosion, the corrosion mechanism which had not been observed in the experiments. Finally, the most important highlights of the studies are presented in the Conclusion section. Also, the limitations and the potential benefits of the results of this project for the future research works is explained, and new ideas for the future projects concerning the mechanical behavior of absorbable metal foams is proposed.
7

Development of solvent-free polylactic acid/chitosan open-cell composite scaffolds for bone tissue engineering

Osman, Miada Abubaker 08 September 2023 (has links)
Thèse ou mémoire avec insertion d’articles / L'objectif principal de cette thèse est de développer un échafaudage à cellules ouvertes qui ne nécessite pas de traitement supplémentaire avec des solvants pour offrir une bonne adhérence interfaciale et favoriser la prolifération des ostéoblastes. Pour atteindre cet objectif, diverses étapes ont été suivies et discutées dans les différents chapitres de la thèse. Au chapitre 2, la technique de moulage par compression a été utilisée pour développer une mousse à cellules ouvertes en acide polylactique (PLA) en utilisant la technique de plan d'expérience (Design of Experiments, DoE, en anglais). Les travaux réalisés ont montré que la structure cellulaire de la mousse développée était affectée par les trois paramètres de procédé suivants : le temps de moussage, la température d'ouverture du moule et la concentration massique de l'agent de moussage, l'azodicarbonamide (ADA). Une équation de régression reliant la taille moyenne des cellules à ces trois paramètres a été développée à partir du DoE, et l'analyse de variance (ANOVA) a été utilisée pour trouver les meilleurs paramètres d'ajustement correspondant aux données expérimentales. Au chapitre 3, nous avons développé et analysé une variété d'échafaudages à cellules ouvertes composés de chitosane (CS) et de copolymère chitosane greffé PLA (CS-g-PLA) dispersés à l'intérieur de la matrice PLA. Les résultats ont démontré une dégradation hydrolytique des échafaudages composites PLA/CS, ce qui n'était pas le cas pour les échafaudages PLA/CS-g-PLA modifiés qui présentaient une bonne stabilité hydrolytique. Par conséquent, par rapport aux échafaudages PLA/CS non compatibilisés, les échafaudages PLA/CS-g-PLA ont démontré une adhésion et une prolifération élevées des ostéoblastes après trois et cinq jours de culture cellulaire. Enfin, nous avons montré au chapitre 4 des résultats expérimentaux sur le développement, par la technique de moulage par compression, d'échafaudages poreux à cellules ouvertes en PLA sans l'utilisation de solvants additionnels. L'originalité de ce travail consiste à utiliser un composite moussant chimique spécialement préparé, que nous avons nommé CFCO, dans lequel le copolymère CS-g-PLA a été ajouté à différentes concentrations dans un mélange de PLA et d'ADA utilisé comme agent chimique de moussage. Lors du moussage des échafaudages à base de PLA à l'aide de ce CFCO spécial, le copolymère CS-g-PLA, qui est un composant du CFCO, migre à la surface des pores générés et y est immobilisé. La localisation du copolymère CS-g-PLA à la surface des pores a été confirmée par la microscopie électronique à balayage (MEB) et la microscopie confocale. Pour une concentration de copolymère CS-g-PLA de 6,90 % en poids, le fait que le copolymère ait été maintenu exposé à la surface des pores a conduit à une prolifération cellulaire d'environ 52 % supérieure à celle obtenue avec l'échantillon témoin de PLA pur, et de 28 % supérieure à celle obtenue avec 10 % en poids de CS-g-PLA dispersé à l'intérieur de la matrice PLA. / The main objective of this thesis is to develop an open-cell scaffold without the need of any further solvent treatment to provide a good interfacial adhesion and proliferation properties for osteoblast cells. To attain this objective, different steps were followed and discussed in the following chapters. In chapter 2, a compression molding technique was used to develop a polylactic acid (PLA) open-cell foam morphology using a design of experiments (DoE) methodology. It was observed that the cellular structure was affected by three molding parameters: the foaming time, mold opening temperature, and the weight concentration of azodicarbonamide (ADA) blowing agent. The analysis of variance (ANOVA) was performed to identify the optimal fitting parameters based on the experimental data, and a regression equation relating the average cell size to the three mentioned processing parameters was developed from the DoE. The analysis of variance (ANOVA) was used to find the best dimensional fitting parameters based on the experimental data. In chapter 3, we developed and analyzed a variety of open-cell scaffolds composed of chitosan (CS) and CS-g-PLA copolymer dispersed inside the PLA matrix. The corresponding results demonstrated an hydrolytic degradation of PLA/CS composite scaffolds, which was not the case for the modified PLA/CS-g-PLA scaffolds that showed a good hydrolytic stability. Consequently, compared to uncompatibilized PLA/CS scaffolds, compatible PLA/CS-g-PLA scaffolds demonstrated high osteoblast cell adhesion and proliferation after three and five days of cultured cells. Finally, we showed in chapter 4 experimental results on the development, by compression molding, of solvent-free PLA open-cell porous scaffolds. The originality consists of using a specially prepared chemical foaming composite, that we named CFCO, in which CS-g-PLA copolymer was added at various concentrations into a mixture of PLA and ADA used as chemical foaming agent. During the foaming of the PLA-based scaffolds using this special CFCO, the CS-g-PLA copolymer, which is a component of the CFCO, is projected toward the surface of the generated pores and immobilized there. The localization of CS g-PLA copolymer on the surface of the pores was confirmed by scanning electron microscopy (SEM) and confocal microscopy. For CS-g-PLA copolymer concentration of 6.90 wt.%, the fact that it was kept available on the surface of the pores led to osteoblast cells proliferation about 52% higher than that obtained with the pure PLA control sample and 28% higher than that obtained with 10 wt.% CS-g-PLA dispersed inside the whole PLA matrix.
8

Design and development of complementary strategies to reinforce cellularized collagen-based tubular gels for vascular applications

Bonizol Camasao, Dimitria 17 April 2023 (has links)
Le besoin clinique de greffes alternatives pour le remplacement des vaisseaux sanguins de petit diamètre a stimulé l'émergence du domaine de l'ingénierie tissulaire vasculaire. Des constructions tubulaires ont été développées au cours des dernières décennies en combinant des échafaudages (structures 3D composées de matrices décellularisées, polymères naturels ou synthétiques), des cellules (cellules adultes ou souches) et des signaux régulateurs (nutriments, facteurs de croissance et / ou stimuli mécaniques) visant à mimer les propriétés de la paroi vasculaire. Le gel de collagène constitue un échafaudage couramment utilisé dans le domaine puisqu'il s'agit de la principale protéine de la paroi vasculaire et qu'il contient donc des signaux structurels et biochimiques inhérents pour favoriser la formation des tissus in vitro. Le Laboratoire de biomatériaux et de bioingénierie de l'Université Laval possède une expertise sur l'extraction de la protéine, la production et la caractérisation de gels tubulaires cellulaires à base de collagène et le groupe rapporte des avancées significatives dans la fabrication d'un modèle tri-culture répliquant les trois couches de la paroi vasculaire. Un inconvénient récurrent de l'utilisation de polymères naturels pour la composition des échafaudages repose sur les faibles propriétés mécaniques résultant de leur processus d'extraction. De plus, la structure et la composition organisées des vaisseaux sanguins confèrent un comportement mécanique unique qui orchestre parfaitement la propagation du sang dans tous les tissus du corps. Cette structure et ce comportement complexes sont difficiles à reproduire dans des constructions d'ingénierie tissulaire et cela a fait l'objet d'intenses recherches au cours des cinquante dernières années. Dans cette optique, l'objectif de cette thèse de doctorat était de concevoir et développer différentes stratégies pour renforcer les gels tubulaires à base de collagène pour des applications vasculaires. Les stratégies étudiées dans cette thèse ont été conçues pour maintenir la similitude biologique du modèle avec le tissu natif et ainsi, aucun composant synthétique ou produit chimique n'a été introduit. Le renforcement des gels tubulaires à base de collagène a été exploré en modifiant différents composants impliqués dans leur préparation: suspension cellulaire, solution de collagène et maturation. Une densité d'ensemencement cellulaire supérieure à celle couramment trouvée dans la littérature, l'incorporation de recombinamers de type élastine (ELR) dans l'échafaudage et la stimulation mécanique dans un bioréacteur de perfusion ont amélioré les propriétés mécaniques des constructions et la raison commune en était l'augmentation de la production d'ECM. Une densité d'ensemencement cellulaire égale ou supérieure à 1.5 x 10⁶ cellules/mL, un échafaudage composé de 70 % de collagène et 30 % de ELR (w %) et la stimulation mécanique dans un bioréacteur de perfusion pendant la maturation sont les conditions suggérées dans chaque stratégie pour la fabrication de modèles de parois vasculaires. En outre, une plate-forme physiologiquement pertinente pour la fabrication et la maturation in situ d'un modèle de paroi vasculaire avancé a été développée, constituant une alternative précieuse pour le test de nouveaux médicaments, technologies et dispositifs endovasculaires et pour l'étude du processus patho/physiologique se produisant dans ce tissu. / The clinical need for alternative grafts for the replacement of small diameter blood vessels stimulated the emergence of the vascular tissue engineering field. Tubular constructs have been developed in the last decades by combining scaffolds (3D structures composed of decellularized matrices, natural or synthetic polymers), cells (adult or stem cells) and regulatory signals (nutrients, growth factors and/or mechanical stimulus) aiming to mimic the properties of the vascular wall. Collagen gel is one common scaffold used in the field since it is the main protein of the vascular wall and therefore it contains inherent structural and biochemical cues to promote tissue formation in vitro. The Laboratory for Biomaterials and Bioengineering of Laval University has an expertise on the extraction of the protein, production, and characterization of cellularized collagen-based tubular gels. Furthermore, the group has been reporting significant advancements in the fabrication of a tri-culture model replicating the three layers of the vascular wall. One recurrent drawback of using natural polymers for composing the scaffolds relies on the low mechanical properties resulted from their extraction process. In addition, the organized structure and composition of blood vessels imparts a unique mechanical behavior which perfectly orchestrate the blood propagation into all tissues of the body. This complex structure and behavior are challenging to reproduce in tissue engineered constructs and this has been a subject of intense research during the last fifty years. In this light, the objective of this doctoral thesis was to design and develop different strategies to reinforce collagen-based tubular gels for vascular applications. The strategies investigated in this thesis were designed to maintain the biological similarity of the model with the native tissue and so, no synthetic components or chemicals were introduced. The reinforcement of collagen-based tubular gels was explored by altering different components involved in their preparation: cell suspension, collagen solution and maturation. Cell seeding density higher than the commonly found in literature, the incorporation of elastin-like recombinamers (ELR) in the scaffold and the mechanical stimulation in a perfusion bioreactor improved the mechanical properties of the constructs and the common reason of that was the increase in the ECM production. Cell seeding density equal or higher than 1.5 x 10⁶ cells/mL, a scaffold composed of 70 % collagen and 30 % ELR (w %) and the mechanical stimulation in a perfusion bioreactor during maturation are the conditions suggested in each strategy for the fabrication of vascular wall models. Furthermore, a physiologically relevant platform for the in situ fabrication and maturation of an advanced vascular wall model was developed constituting a valuable alternative for the testing of new drugs, technologies and endovascular devices and for the investigation of patho/physiological process occurring in this tissue.
9

Development of new biocompatible scaffolds for human ACL substitutes

Napa, Ioana Diana 13 April 2018 (has links)
Le Laboratoire de génie tissulaire est reconnu pour ses réalisations en ce domaine. Le principal défi soulevé par cette approche est le choix de la matrice des tissus reconstruits. Mes travaux ont consisté à établir une technologie de synthèse de collagène humain recombinant à des fins expérimentales et cliniques. Ce collagène sera utilisé éventuellement pour produire des substituts du ligament croisé antérieur (LCA) du genou, par génie tissulaire. Ces substituts ligamentaires pourraient être une alternative de remplacement des LCA rupturés. Le Dr. Nazrul Islam a conceptualisé une stratégie moléculaire pour construire un plasmide incluant les gènes codant pour les deux chaînes du collagène humain de type 1 et les deux sous-unités de l'enzyme prolyl-4-hydroxylase. Des cellules d'insecte ont été transfectées avec ce vecteur, en exploitant le système de bacul ovi rus, pour synthétiser le collagène recombinant. J'ai participé à chaque étape et à la mise au point des protocoles optimisé à grande échelle de cette nouvelle technologie, pour ensuite purifier le collagène et le caractériser biochimiquement. Mes superviseurs et moi-même considérons que ces travaux ont réussi et que bientôt, des substituts ligamentaires humains seront greffés pour évaluer leur intégration dans une articulation du genou in vivo.
10

Conception, développement et validation d'un système de co-culture pour la régénération du tissu vasculaire à partir de structures d'échafaudages cellularisés

Loy, Caroline 24 April 2018 (has links)
Le besoin clinique de nouvelles technologies pour favoriser la régénération des tissus et des organes lésés ou malades a permis l'émergence de l'ingénierie tissulaire. Ce concept s'est révélé être une stratégie prometteuse afin de fournir une alternative aux maladies vasculaires dans un futur plus ou moins proche. Les modèles issus du génie tissulaire vasculaire ont également le potentiel d'être utilisés comme des modèles in vitro de tissus pour l'étude des processus physiopathologiques ainsi que pour des essais précliniques de médicaments et de différents dispositifs médicaux. De nombreuses approches existent dans ce domaine ayant chacune ses avantages et inconvénients, mais aucune n'a encore eu un réel succès. Dans ce contexte, le projet de cette thèse a été de concevoir, développer et valider un modèle de la paroi vasculaire en mimant la structure d'une artère naturelle. Brièvement, une artère est composée de trois couches composées chacune d'un type cellulaire différent qui lui confèrent des propriétés et des fonctions propres à chaque type de cellules. Celles-ci sont enchevêtrées dans une matrice extracellulaire majoritairement composée de collagène. En se basant sur les travaux précédents du Laboratoire de Biomatériaux et Bioingénierie de l'Université Laval, le gel de collagène de type I a été utilisé comme matrice tridimensionnelle grâce à son fort potentiel pour supporter et guider les cellules vasculaires dans le processus de régénération du tissu in vitro. L’objectif a été le développement d'un modèle de tri-culture avec un échafaudage à base de collagène pour imiter intimement l'organisation cellulaire en tri-couches des artères natives. Dans un premier temps, un modèle plat a été élaboré et caractérisé. Puis dans un deuxième temps, une nouvelle méthode pour créer des tubes cellularisés de collagène a été mise au point. Et enfin, dans un troisième temps, le développement d'un protocole pour la création d'une tri-culture tubulaire soutenue par une matrice de collagène a été conçu et validé. / The tremendous clinical need for the development of technologies to facilitate the regeneration of injured or diseased tissues and organs allowed the openning of tissue engineering field. The concept of vascular tissue engineering has emerged as a promising strategy in order to provide an alternative to animal models of vascular diseases. Engineered arterial models have the potential to be used instantly as an in vitro models of vascular tissue for the investigation of patho/physiological processes and as preclinical tests for drugs and devices. Many approaches exist in this area, each with its advantages and disadvantages but none of the approaches yet had a real success. With this in mind, the objective of this thesis was to design, develop and validate an easy and fast-to-prepare vascular wall model mimicking the natural artery structure. Briefly, an artery is composed of three layers, consisting of different cell types that confer each layer with certain properties and functions. These cells are embedded in extracellular matrix mainly composed of collagen. Based on the previous work of the Laboratory for Biomaterials and Bioengineering of Laval University, type I collagen gel was used as a three dimensional matrix; thanks to its strong potential to support and guide the vascular cells in the process of tissue regeneration in vitro. The objective was therefore to develop a tri-culture model based on collagen scaffold to closely mimic the cellular organization in tri-layers of native arteries. First, a flat model was developed and characterized. Then secondly, a new method for creating cellularized collagen tubes was developed. And finally, the development of a protocol for the establishment of a tubular tri-culture supported by a collagen matrix was designed and valided.

Page generated in 0.4923 seconds