• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Méthodes numériques pour la dynamique des structures non-linéaires incompressibles à deux échelles.

Hauret, Patrice 20 September 2004 (has links) (PDF)
Le travail exposé dans ce mémoire consiste en une étude mathématique et numérique d'outils permettant la simulation de la dynamique de structures complexes non-linéaires, quasi-incompressibles, et présentant deux échelles de longueurs caractéristiques. Pour être plus précis concernant ce dernier point, les structures considérées sont supposées comporter des détails géométriques fins sur leur bord. Cette étude, réalisée en partenariat avec la Manufacture Française des Pneumatiques Michelin, est largement motivée par l'importance de calculs dynamiques en roulage du pneumatique afin de prédire la valeur de différentes grandeurs physiques : contraintes dans les matériaux, pressions de contact au sol ou encore rayonnement acoustique. Dans ce cadre, les difficultés d'obtention de simulations complètes et réalistes pour des coûts de calcul raisonnables sont liées à la complexité de la géométrie, au comportement des matériaux, au mode de sollicitation par contact, ou encore à l'intervention de différentes échelles de longueur, de temps ou de rigidité caractéristiques de la structure. Après une description de l'anatomie du pneumatique, nous mentionnons quelques uns des enjeux de la simulation numérique lors de la phase de conception. Nous soulignons ensuite les propriétés intrinsèques de la structure qui rendent ces études délicates. Enfin, nous délimitons les problèmes qui occupent le reste de ce mémoire, et esquissons la démarche adoptée. Référence est faite au contenu des chapitres et aux contributions apportées.
2

Stabilité et dynamique de pentes sous-marines

Doppler, Delphine 14 December 2005 (has links) (PDF)
Cette thèse consiste en l'étude expérimentale de la dynamique d'une interface granulaire inclinée et cisaillée par un écoulement d'eau laminaire, continu. Dans le canal de géométrie contrôlée, deux modes de transport sédimentaires sont observables : par érosion hydrodynamique et par écoulement gravitaire en masse. <br />Une première étude est consacrée aux seuils de mise en mouvement des particules. Deux modèles simples prenant en compte la gravité, la friction entre particules et le cisaillement du fluide, permettent de retrouver l'influence de la vitesse de l'écoulement d'eau et de la pente du lit sur les seuils de transport par érosion et par avalanche.<br />Le régime d'écoulements gravitaires est ensuite exploré pour des pentes au-delà de l'angle maximal de stabilité. Les mesures d'évolution de la pente du tas et du débit de particules (par PIV) montrent que l'avalanche atteint rapidement un régime quasi-stationnaire. La vitesse des grains dépend uniquement de la pente du tas, dans une relation quantitativement prédite par un modèle adapté des développements récents de modélisation de la rhéologie des granulaires. <br />Dans une troisième partie on s'intéresse à la déformation de l'interface granulaire dans un régime particulier. La formation de rides à tourbillon est observée à la surface de l'avalanche, lorsqu'on applique un écoulement d'eau qui tend à transporter les particules dans la direction opposée. Après une phase initiale de croissance exponentielle, l'amplitude des rides sature. La zone de recirculation à l'arrière de la ride semble contrôler la forme des structures tandis que la quantité de matière transportable par l'avalanche semble déterminer leur amplitude.

Page generated in 0.0473 seconds