• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of a University Physics Studio Learning Environment: The Interrelationships of Students' Perceptions, Epistemological Beliefs and Cognitive Outcomes.

Yeo, Shelley R. January 2002 (has links)
Physics learning has been the focus of much research over the last few decades. One line of such research has had knowledge about physics conceptual understanding as its object. Conceptual physics learning is found to be enhanced by the use of a variety of interactive engagement teaching and learning strategies. Another line of research in physics education has been through the development of computer-based learning environments as alternatives to traditional lecturing approaches. One such development has been that of a 'physics Studio' in which computer software delivers content and facilitates activities and communication, and instructors adopt a tutoring or learning facilitator role rather than lecturing role. Curtin University of Technology has drawn on both lines of research, resulting in the creation of a Physics Studio. In addition, a constructivist philosophy has provided guiding principles underpinning the conduct of first year physics classes. The aim of this study has been to evaluate students' physics learning in first year Studio classes. In particular, the aim has been to examine the role of students' epistemological beliefs (beliefs about knowledge and knowing) and their perceptions of the learning environment, in that learning. The study is situated across the fields of psychology and physics education research. It uses an ex-post facto comparative research design together with a qualitative methodology to compare students in Studio classes with those in physics classes in a traditional lecture stream. The use of multidimensional scaling as a technique for reducing complex data to a visual form for the purpose of describing and investigating the Studio learning environment is also explored. / Findings from this study suggest that a Studio approach that incorporates student-centred, social constructivist teaching and learning behaviours can result in improved learning for students in a discipline such as physics, which is normally associated with authoritative and didactic teaching. The results indicate that most students responded positively to the characteristics of the Studio approach. Their learning outcomes and improvement in conceptual understanding exceeded those of students in the traditional lecture classes. Students' beliefs about the structure of knowledge affected their cognitive outcomes through their preference for particular learning strategies. Students with 'naive', positivist epistemological beliefs were more likely to choose a narrow range of learning strategies and to have poorer cognitive outcomes. Students with more 'sophisticated', constructivist epistemological beliefs were more likely to choose a wider range of learning strategies and to have better cognitive outcomes. There is evidence from this work that the constructivist learning environment influences students' epistemological beliefs, and that their beliefs influence the way they respond to the learning environment. Using multidimensional scaling, spatial configurations of learning environment parameters for Studio and traditional groups, although structurally similar, were visibly different. In particular, the preferred learning environment of Studio students formed a complex web of interrelationships, whereas the preferred learning environment of students in the traditional course formed a simpler pattern with minimal interrelationships among parameters. / Other factors affecting the responses of students to the constructivist learning environment were their perceptions of the nature of the subject matter as represented by assessment tasks, and their expectations about the role of instructors. Some students were unable to change their epistemological beliefs and learning patterns to fit teachers' expectations. These findings have implications for teachers of physics who adopt or wish to adopt constructivist rather than didactic teaching methods, and for those implementing Studio approaches. An instructor's best efforts to implement alternative teaching approaches and methods can be circumvented by the beliefs and attitudes of students if they are inconsistent with the epistemology implicit in the teaching methods. For example, students with naive beliefs in the structure and certainty of knowledge need guidance and experiences that provide validity for different ways of learning physics. Students also need help to understand the concept of, and to value, self-reflective learning practices. Finally, learning in a Studio class is enhanced for students whose beliefs are consistent with, or change to suit, the philosophy underpinning instruction.
2

Assessing the Effectiveness of Studio Physics at Georgia State University

Upton, Brianna M 01 August 2010 (has links)
Previous studies have shown that many students have misconceptions about basic concepts in physics which persist after instruction. It has been concluded that one of the challenges lies in the teaching methodology. To address this, Georgia State University (GSU) has begun teaching studio algebra-based physics. Although many institutions have implemented studio physics, most have done so in calculus-based sequences. Additionally, the unique environment of GSU’s population as a diverse, urban research institution is considered. The effectiveness of the studio approach for this demographic in an algebra-based introductory physics course was assessed. This five-semester pilot study presents demographic survey results and compares the results of student pre- and post-tests using the Force Concept Inventory (FCI). FCI results show that 1) the studio approach yields higher learning gains than the conventional course, 2) there are significant performance differences among ethnic groups, and 3) a gender gaps exists regardless of instructional method.

Page generated in 0.3031 seconds