• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 29
  • 22
  • 7
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 117
  • 61
  • 30
  • 29
  • 21
  • 15
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Die Vita Sturmi des Eigil von Fulda li terarkritisch-historische Untersuchung und Edition.

Engelbert, Pius. Eigil, January 1968 (has links)
Diss.--Pontificio Ateneo di St. Anselmo, Rome, 1966. / Includes the Latin text of Eigil's Vita sancti Sturmi (p. [129]-163). Bibliography: p. xi-xv.
2

Die Vita Sturmi des Eigil von Fulda; li terarkritisch-historische Untersuchung und Edition.

Engelbert, Pius. Eigil, January 1968 (has links)
Diss.--Pontificio Ateneo di St. Anselmo, Rome, 1966. / Includes the Latin text of Eigil's Vita sancti Sturmi (p. [129]-163). Bibliography: p. xi-xv.
3

On the first two eigenvalues of the Sturm-Liouville operators

Masehla, Johannes Namo 06 August 2008 (has links)
No description available.
4

Generalized Sturm-Liouville theory for dissipative systems. / 耗散系統中的廣義Sturm-Liouville理論 / Generalized Sturm-Liouville theory for dissipative systems. / Hao san xi tong zhong de guang yi Sturm-Liouville li lun

January 2004 (has links)
Lau Ching Yan Ada = 耗散系統中的廣義Sturm-Liouville理論 / 劉正欣. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 156-157). / Text in English; abstracts in English and Chinese. / Lau Ching Yan Ada = Hao san xi tong zhong de guang yi Sturm-Liouville li lun / Liu Zhengxin. / Abstract --- p.i / Acknowledgement --- p.iii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Vibrational motion in physics --- p.1 / Chapter 1.2 --- Normal modes of vibration --- p.2 / Chapter 1.3 --- Boundary conditions --- p.4 / Chapter 1.4 --- The wave equation --- p.6 / Chapter 1.4.1 --- Mechanical waves --- p.7 / Chapter 1.4.2 --- Electromagnetic waves --- p.9 / Chapter 1.5 --- General form of the wave equation --- p.10 / Chapter 1.5.1 --- V(x) as a restoring force --- p.11 / Chapter 1.5.2 --- V(x) in gravitational waves --- p.13 / Chapter 1.5.3 --- V(x) by transformation --- p.16 / Chapter 2 --- Sturm-Liouville systems --- p.18 / Chapter 2.1 --- Introduction --- p.18 / Chapter 2.2 --- Differential operators --- p.19 / Chapter 2.2.1 --- Introduction --- p.19 / Chapter 2.2.2 --- Adjoint operators --- p.20 / Chapter 2.2.3 --- Self-adjoint operators --- p.21 / Chapter 2.2.4 --- More examples --- p.24 / Chapter 2.3 --- Sturm-Liouville boundary-value problems --- p.27 / Chapter 2.4 --- Sturm-Liouville theory --- p.28 / Chapter 2.4.1 --- Real eigenvalues --- p.29 / Chapter 2.4.2 --- Orthogonal eigenfunctions --- p.30 / Chapter 2.4.3 --- Completeness of eigenfunctions --- p.31 / Chapter 2.4.4 --- Interlacing zeros of the eigenfunctions --- p.33 / Chapter 2.5 --- Applications of Sturm-Liouville theory --- p.35 / Chapter 2.5.1 --- Vibrations of a string --- p.36 / Chapter 2.5.2 --- The hydrogen atom --- p.40 / Chapter 3 --- Wave equation with damping --- p.46 / Chapter 3.1 --- Statement of problem --- p.46 / Chapter 3.1.1 --- The equation --- p.46 / Chapter 3.1.2 --- The operator --- p.48 / Chapter 3.1.3 --- Non-self-adjointness --- p.49 / Chapter 3.2 --- Eigenfunctions and Eigenvalues --- p.51 / Chapter 3.3 --- The completeness problem --- p.53 / Chapter 4 --- Green's function solution --- p.55 / Chapter 4.1 --- Introduction --- p.55 / Chapter 4.2 --- Green's function solution --- p.56 / Chapter 4.3 --- Fourier transform --- p.58 / Chapter 4.4 --- Inverse Fourier transform --- p.61 / Chapter 5 --- Proof of completeness --- p.66 / Chapter 5.1 --- WKB approximation --- p.66 / Chapter 5.2 --- "An upper bound for \G(x,y,w)e~iwt\ " --- p.68 / Chapter 5.3 --- Proof of completeness --- p.72 / Chapter 5.3.1 --- The limit when R→∞ --- p.72 / Chapter 5.3.2 --- Eigenfunction expansion --- p.76 / Chapter 6 --- The bilinear map --- p.80 / Chapter 6.1 --- Introduction --- p.80 / Chapter 6.2 --- Evaluation of J1(wj) --- p.82 / Chapter 6.3 --- Self-adjointness of H --- p.84 / Chapter 6.4 --- Properties of the map --- p.87 / Chapter 7 --- Applications --- p.89 / Chapter 7.1 --- Eigenfunction expansion --- p.89 / Chapter 7.2 --- Perturbation theory --- p.94 / Chapter 7.2.1 --- First and second-order corrections --- p.95 / Chapter 7.2.2 --- Example --- p.97 / Chapter 7.2.3 --- Example (Constant r) --- p.102 / Chapter 8 --- Critical points --- p.104 / Chapter 8.1 --- Introduction --- p.104 / Chapter 8.2 --- Conservative cases (Γ = 0) --- p.105 / Chapter 8.3 --- Non-conservative cases (Constant r) --- p.107 / Chapter 8.4 --- Critical points away from imaginary axis --- p.108 / Chapter 9 --- Jordan block and applications --- p.114 / Chapter 9.1 --- Jordan basis --- p.114 / Chapter 9.2 --- An analytical example --- p.117 / Chapter 9.2.1 --- Solving for the extra basis function --- p.117 / Chapter 9.2.2 --- Freedom of choice --- p.118 / Chapter 9.2.3 --- Interpolating function --- p.120 / Chapter 9.3 --- A numerical example --- p.122 / Chapter 9.3.1 --- "Solving for f2,1 " --- p.124 / Chapter 9.3.2 --- Interpolating function --- p.126 / Chapter 9.4 --- Jordan basis expansion --- p.127 / Chapter 9.5 --- Perturbation theory near critical points --- p.131 / Appendices --- p.142 / Chapter A --- WKB approximation --- p.142 / Chapter B --- Green's function (Discontinuous V(x)) --- p.145 / Chapter B.l --- Finite discontinuouity in V(x) --- p.145 / Chapter B.1.1 --- Green's function --- p.145 / Chapter B.1.2 --- "Behaviour of the extra phases Φ, Φ " --- p.147 / Chapter B.2 --- Delta function in --- p.148 / Chapter B.2.1 --- Green's function --- p.148 / Chapter B.2.2 --- "Behaviour of the extra phases Φ, Φ " --- p.150 / Chapter C --- Dual basis --- p.151 / Chapter C.1 --- Matrix representation --- p.152 / Chapter C.2 --- Relation with bilinear map --- p.153 / Chapter C.3 --- Construction of dual basis --- p.154 / Bibliography --- p.156
5

Der Geniebegriff der Stürmer und Dränger und der Frühromantiker.

Ernst, Julius, January 1916 (has links)
Inaugural dissertation - Zürich. / Curriculum vitae.
6

The nature of spectrum for some singular Sturm-Liouville operators

Lee, Shuo-Chi 23 July 2006 (has links)
We give a report on the Sturm-Liouville problem defined on semi-infinite interval. Here as an extension of the Fourier expansion, we have a Parseval equality involving a Fourier integral with respect to a spectral function rho. This function rho is also related to Titchmarsh-Weyl m-function m(lambda) giving L2 solutions of the problem. The spectrum can be viewed as nonconstant points of the spectral function. Following Titchmarsh¡¦s monograph, we shall investigate the nature of the spectrum associated with different asymptotic behaviors of the potential function q, namely, when q¡÷¡Û, q¡÷0 or q¡÷-¡Û.
7

Änderung der Sturmtätigkeit über den Weltmeeren, untersucht anhand von Luftdruckbeobachtungen

Saleck, Nadja. Unknown Date (has links) (PDF)
Kiel, University, Diss., 2005.
8

J. Sturms und Calvins Schulwesen. Ein Vergleich.

Paasch, Hermann, January 1900 (has links)
Münster, Phil. Diss. v. 10. April 1915, Ref. Geyser. / [Geb. 9. März 77 Schladen ; Wohnort : Hamm i. W. ; Staatsangeh. : Preussen ; Vorbildung : G. Josephinum Hildesheim Reife 99 ; Studium : Münster 8 S. ; Rig. 9. Febr. 15.].
9

Der Geniebegriff der Stürmer und Dränger und der Frühromantiker

Ernst, Julius, January 1916 (has links)
Inaugural dissertation - Zürich. / Curriculum vitae.
10

The application of asymptotic forms to an expansion problem of the Sturm Liouville type where the coefficient of the parameter changes sign

Barron, James Joseph. January 1934 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1934. / Typescript and manuscript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.

Page generated in 0.0551 seconds