• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the first two eigenvalues of the Sturm-Liouville operators

Masehla, Johannes Namo 06 August 2008 (has links)
No description available.
2

Ambarzumian¡¦s Theorem for the Sturm-Liouville Operator on Graphs

Wu, Mao-ling 06 July 2007 (has links)
The Ambarzumyan Theorem states that for the classical Sturm-Liouville problem on $[0,1]$, if the set of Neumann eigenvalue $sigma_N={(npi)^2: nin { f N}cup { 0}}$, then the potential function $q=0$. In this thesis, we study the analogues of Ambarzumyan Theorem for the Sturm-Liouville operators on star-shaped graphs with 3 edges of different lengths. We first solve the direct problem: to find out the set of eigenvalues when $q=0$. Then we use the theory of transformation operators and Raleigh-Ritz inequality to prove the inverse problem. Following Pivovarchik's work on star-shaped graphs of uniform lengths, we analyze the Kirchoff condition in detail to prove our theorems. In particular, we study the cases when the lengths of the 3 edges satisfy $a_1=a_2=frac{1}{2}a_3$ or $a_1=frac{1}{2}a_2=frac{1}{3}a_3$. Furthermore, we work on Neumann boundary conditions as well as Dirichlet boundary conditions. In the latter case, some assumptions about $q$ have to be made.
3

Espectro e dimensão Hausdorff de operadores bloco-Jacobi com perturbações esparsas distribuídas aleatoriamente / Spectrum and Hausdorff dimension of block-Jacobi matrices with sparse perturbations randomly distributed

Carvalho, Silas Luiz de 17 September 2010 (has links)
Neste trabalho buscamos caracterizar o espectro de uma classe de operadores bloco--Jacobi limitados definidos em $l^2(\\Lambda,\\mathbb{C}^L)$ ($\\Lambda: \\mathbb{Z}_+\\times\\{0,1,\\ldots,L-1\\}$ representa uma faixa de largura $L\\ge 2$ no semi--plano $\\mathbb{Z}_+^2$) e sujeitos a perturbações esparsas (no sentido que as distâncias entre as ``barreiras\'\' crescem geometricamente à medida que estas se afastam da origem) distribuídas aleatoriamente. Tais operadores são construídos a partir da soma de Kronecker de matrizes de Jacobi $J$, cada qual atuando em uma direção do espaço. Demonstramos, por meio da bloco--diagonalização do operador, que %o estudo de suas principais propriedades espectrais dependem da %se limita à caracterização da ``medida de mistura\'\' $\\frac{1}{L}\\sum_{j=0}^{L-1}\\mu_j$, $\\mu_j$ a medida espectral associada à matriz de Jacobi $J^j=J+2\\cos(2\\pi j/L)I $. Para tanto, buscamos primeiramente caracterizar cada uma das medidas $\\mu_j$, explorando e aperfeiçoando algumas técnicas bastante conhecidas no estudo de operadores esparsos unidimensionais. Demonstramos, por exemplo, que a seqüência de ângulos de Prüfer (variáveis que, juntamente com os raios de Prüfer, parametrizam as soluções da equação de autovalores) é uniformemente distribuída no intervalo $[0,\\pi)$, o %que %resultado que nos permite determinar o comportamento assintótico médio das soluções da equação de autovalores. Tal resultado, aliado às técnicas desenvolvidas por Marchetti \\textit{et. al.} em \\cite{MarWre} e a uma adaptação dos critérios de Last e Simon \\cite{LS} para operadores esparsos, nos permitem demonstrar a existência de uma transição aguda (pontual) entre os espectros singular--contínuo e puramente pontual. Empregamos em seguida os resultados de Jitomirskaya e Last presentes em \\cite{JitLast} e obtemos a dimensão Hausdorff exata associada à medida $\\mu_j$, dada por $\\alpha_j=1+\\frac{4(1-p^2)^2}{p^2(4- (\\lambda-2\\cos(2\\pi j/L))^2)}$ ($\\lambda\\in[-2,2]$), recuperando um resultado análogo obtido por Zlato\\v s em \\cite{Zla}. Por fim, adaptamos tais resultados à situação da medida de mistura associada à matriz bloco--Jacobi, obtendo $\\alpha=\\min_{j\\in\\mathcal{I}(\\lambda)}\\alpha_j$, $\\mathcal{I}(\\lambda):\\{m \\in\\{0,1,\\ldots,L-1\\}:\\lambda\\in[-2+2\\cos(2\\pi j/L),2+2\\cos(2\\pi j/L)]\\}$, como sua dimensão Hausdorff exata. Estudamos modelos idênticos com esparsidades sub e super-geométricas, obtendo na primeira situação um espectro puramente pontual (de dimensão Hausdorff nula) e na segunda um espectro puramente singular--contínuo (de dimensão Hausdorff 1). Finalmente, verificamos a existência de transição entre os espectros puramente pontual e singular--contínuo em um modelo com esparsidade super-geométrica cuja dimensão Hausdorff associada à medida espectral é nula. / In this work we attempt to caracterize the spectrum of a class of limited block--Jacobi operators defined in $l^2(\\Lambda,\\mathbb{C}^L)$ ($\\Lambda: \\mathbb{Z}_+\\times\\{0,1,\\ldots,L-1\\}$ represents a strip of width $L\\ge 2$ on the semi--plane $\\mathbb{Z}_+^2$) subject to a sparse perturbation (which means that the distance between the ``barries\'\' grow geometrically with their distance to the origin) randomly distributed. Such operators are defined as Kronecker sums of unidimensional Jacobi matrices $J$, each one acting in different directions of the space. We prove, by means of a block--diagonalization of the operator, that %the study of its most relevant spectral properties depend on %is related to the caracterization of the ``mixture measure\'\' $\\frac{1}{L}\\sum_{j=0}^{L-1}\\mu_j$, $\\mu_j$ the spectral measure of the Jacobi matrix $J^j=J+2\\cos(2\\pi j/L)I$. For this, we must characterize at first each one of the measures $\\mu_j$, exploiting and improving some well known techniques developed in the study of unidimensional sparse operators. We prove, for instance, that the sequence of Prüfer angles (variables which parametrize the solutions of the eigenvalue equation) are uniform distributed on the interval $[0,\\pi)$, a result which gives us condition to determine the average asymptotic behavior of the solutions of the eigenvalue equation. Such result, in association with the techniques developed by Marchetti \\textit{et. al.} in \\cite{MarWre} and with an adaptation of Last--Simon \\cite{LS} criteria for sparse operator, permit us to prove the existence of a sharp transition between singular continuous and pure point spectra. Following on, we use the results from Jitomirskaya--Last of \\cite{JitLast} and obtain the exact Hausdorff dimension of the measure $\\mu_j$, given by $\\alpha_j=1+\\frac{4(1-p^2)^2}{p^2(4-(\\lambda-2\\cos(2\\pi j/L))^2)}$ ($\\lambda\\in[- 2,2]$), recovering an analogous result due to Zlato\\v s in \\cite{Zla}. At last, we adapt these results to the mixture measure of the block--Jacobi matrix, obtaining $\\alpha=\\min_{j\\in\\mathcal{I}(\\lambda)}\\alpha_j$, $\\mathcal{I}(\\lambda):\\{m \\in\\{0,1,\\ldots,L-1\\}:\\lambda\\in[-2+2\\cos(2\\pi j/L),2+2\\cos(2\\pi j/L)]\\}$, as its exact Hausdorff dimension. We study as well identical models with sub and super geometric sparsities conditions, obtaining a pure point spectrum (with null Hausdorff dimension) in the first case, and a purely singular continuous spectrum (such that its Hausdorff dimension is 1) in the second. Finally, we prove the existence of a transition between pure point and singular continuous spectra in a model with sub--geometric sparsity whose Hausdorff dimension related to the spectral measure is null.
4

Espectro e dimensão Hausdorff de operadores bloco-Jacobi com perturbações esparsas distribuídas aleatoriamente / Spectrum and Hausdorff dimension of block-Jacobi matrices with sparse perturbations randomly distributed

Silas Luiz de Carvalho 17 September 2010 (has links)
Neste trabalho buscamos caracterizar o espectro de uma classe de operadores bloco--Jacobi limitados definidos em $l^2(\\Lambda,\\mathbb{C}^L)$ ($\\Lambda: \\mathbb{Z}_+\\times\\{0,1,\\ldots,L-1\\}$ representa uma faixa de largura $L\\ge 2$ no semi--plano $\\mathbb{Z}_+^2$) e sujeitos a perturbações esparsas (no sentido que as distâncias entre as ``barreiras\'\' crescem geometricamente à medida que estas se afastam da origem) distribuídas aleatoriamente. Tais operadores são construídos a partir da soma de Kronecker de matrizes de Jacobi $J$, cada qual atuando em uma direção do espaço. Demonstramos, por meio da bloco--diagonalização do operador, que %o estudo de suas principais propriedades espectrais dependem da %se limita à caracterização da ``medida de mistura\'\' $\\frac{1}{L}\\sum_{j=0}^{L-1}\\mu_j$, $\\mu_j$ a medida espectral associada à matriz de Jacobi $J^j=J+2\\cos(2\\pi j/L)I $. Para tanto, buscamos primeiramente caracterizar cada uma das medidas $\\mu_j$, explorando e aperfeiçoando algumas técnicas bastante conhecidas no estudo de operadores esparsos unidimensionais. Demonstramos, por exemplo, que a seqüência de ângulos de Prüfer (variáveis que, juntamente com os raios de Prüfer, parametrizam as soluções da equação de autovalores) é uniformemente distribuída no intervalo $[0,\\pi)$, o %que %resultado que nos permite determinar o comportamento assintótico médio das soluções da equação de autovalores. Tal resultado, aliado às técnicas desenvolvidas por Marchetti \\textit{et. al.} em \\cite{MarWre} e a uma adaptação dos critérios de Last e Simon \\cite{LS} para operadores esparsos, nos permitem demonstrar a existência de uma transição aguda (pontual) entre os espectros singular--contínuo e puramente pontual. Empregamos em seguida os resultados de Jitomirskaya e Last presentes em \\cite{JitLast} e obtemos a dimensão Hausdorff exata associada à medida $\\mu_j$, dada por $\\alpha_j=1+\\frac{4(1-p^2)^2}{p^2(4- (\\lambda-2\\cos(2\\pi j/L))^2)}$ ($\\lambda\\in[-2,2]$), recuperando um resultado análogo obtido por Zlato\\v s em \\cite{Zla}. Por fim, adaptamos tais resultados à situação da medida de mistura associada à matriz bloco--Jacobi, obtendo $\\alpha=\\min_{j\\in\\mathcal{I}(\\lambda)}\\alpha_j$, $\\mathcal{I}(\\lambda):\\{m \\in\\{0,1,\\ldots,L-1\\}:\\lambda\\in[-2+2\\cos(2\\pi j/L),2+2\\cos(2\\pi j/L)]\\}$, como sua dimensão Hausdorff exata. Estudamos modelos idênticos com esparsidades sub e super-geométricas, obtendo na primeira situação um espectro puramente pontual (de dimensão Hausdorff nula) e na segunda um espectro puramente singular--contínuo (de dimensão Hausdorff 1). Finalmente, verificamos a existência de transição entre os espectros puramente pontual e singular--contínuo em um modelo com esparsidade super-geométrica cuja dimensão Hausdorff associada à medida espectral é nula. / In this work we attempt to caracterize the spectrum of a class of limited block--Jacobi operators defined in $l^2(\\Lambda,\\mathbb{C}^L)$ ($\\Lambda: \\mathbb{Z}_+\\times\\{0,1,\\ldots,L-1\\}$ represents a strip of width $L\\ge 2$ on the semi--plane $\\mathbb{Z}_+^2$) subject to a sparse perturbation (which means that the distance between the ``barries\'\' grow geometrically with their distance to the origin) randomly distributed. Such operators are defined as Kronecker sums of unidimensional Jacobi matrices $J$, each one acting in different directions of the space. We prove, by means of a block--diagonalization of the operator, that %the study of its most relevant spectral properties depend on %is related to the caracterization of the ``mixture measure\'\' $\\frac{1}{L}\\sum_{j=0}^{L-1}\\mu_j$, $\\mu_j$ the spectral measure of the Jacobi matrix $J^j=J+2\\cos(2\\pi j/L)I$. For this, we must characterize at first each one of the measures $\\mu_j$, exploiting and improving some well known techniques developed in the study of unidimensional sparse operators. We prove, for instance, that the sequence of Prüfer angles (variables which parametrize the solutions of the eigenvalue equation) are uniform distributed on the interval $[0,\\pi)$, a result which gives us condition to determine the average asymptotic behavior of the solutions of the eigenvalue equation. Such result, in association with the techniques developed by Marchetti \\textit{et. al.} in \\cite{MarWre} and with an adaptation of Last--Simon \\cite{LS} criteria for sparse operator, permit us to prove the existence of a sharp transition between singular continuous and pure point spectra. Following on, we use the results from Jitomirskaya--Last of \\cite{JitLast} and obtain the exact Hausdorff dimension of the measure $\\mu_j$, given by $\\alpha_j=1+\\frac{4(1-p^2)^2}{p^2(4-(\\lambda-2\\cos(2\\pi j/L))^2)}$ ($\\lambda\\in[- 2,2]$), recovering an analogous result due to Zlato\\v s in \\cite{Zla}. At last, we adapt these results to the mixture measure of the block--Jacobi matrix, obtaining $\\alpha=\\min_{j\\in\\mathcal{I}(\\lambda)}\\alpha_j$, $\\mathcal{I}(\\lambda):\\{m \\in\\{0,1,\\ldots,L-1\\}:\\lambda\\in[-2+2\\cos(2\\pi j/L),2+2\\cos(2\\pi j/L)]\\}$, as its exact Hausdorff dimension. We study as well identical models with sub and super geometric sparsities conditions, obtaining a pure point spectrum (with null Hausdorff dimension) in the first case, and a purely singular continuous spectrum (such that its Hausdorff dimension is 1) in the second. Finally, we prove the existence of a transition between pure point and singular continuous spectra in a model with sub--geometric sparsity whose Hausdorff dimension related to the spectral measure is null.
5

Etude spectrale d'opérateurs de Sturm-Liouville et applications à la contrôlabilité de problèmes paraboliques discrets et continus / Study of spectral properties of Sturm Liouville operators and applications in null controllability of discretized and continuous parabolic problems

Allonsius, Damien 26 September 2018 (has links)
Dans cette thèse, nous étudions la contrôlabilité à zéro de quelques systèmes paraboliques continus et semi-discrétisés. Nous considérons tout d'abord des systèmes en cascade d'équations paraboliques de la forme ∂t −(∂xγ∂x +q). La variable spatiale évolue dans un intervalle réel borné et ce système est semi-discrétisé en espace par un schéma aux différences finies. En appliquant la méthode des moments, nous démontrons des résultats de contrôlabilité à zéro et de φ(h) contrôlabilité à zéro, suivant les hypothèses formulées sur le maillage et les fonctions γ et q. Puis nous étendons ces résultats lorsque la variable d'espace évolue dans un domaine cylindrique, la zone de contrôle se situant dans une partie d'une section au bord du cylindre. Ce domaine cylindrique se décompose en un produit de deux espaces. Sur le premier, de dimension 1, nous appliquons les résultats décrits précédemment. Sur le second, nous appliquons la méthode de Lebeau-Robbiano. Cette approche permet à la fois de montrer que le problème discrétisé est φ(h) contrôlable à zéro et de retrouver un résultat de contrôlabilité à zéro sur le système continu. Dans une autre partie, nous nous intéressons au temps minimal de contrôle à zéro de l'équation de Grushin posée sur un domaine rectangulaire dont le domaine de contrôle est une bande verticale. L'étude se ramène à une infinité dénombrable, indexée par le paramètre de Fourier $n$, de problèmes de contrôle à zéro d'équations paraboliques, traitée, ici encore, à l'aide de la méthode des moments. / In this thesis, we study the null controllability of some continous and semi discretized parabolic systems. We first consider cascade systems of parabolic equations of the form ∂t −(∂xγ∂x +q). The space variable belongs to a real and bounded interval and this system is semi-discretized in space by a finite differences scheme. Applying the so called moments method, we prove null controllability and φ(h) null controllability results, depending on the hypotheses on the mesh and on functions γ and q. Then, we extend this results when the space variable belongs to a cylindrical domain which control zone is in a section at the border of the cylinder. This cylindrical domain is decomposed into a product of two spaces. On the first, of dimension 1, we apply the results described previously. On the second, we use the Lebeau-Robbiano's procedure. In this framework, we prove φ(h) null controllability results on the discretized domain as well as null controllability results on the continous problem. In another section, we investigate the computation of minimal time of null controllability of Grushin's equation defined on a rectangular domain which control region is a vertical strip. This problem of control amounts to study a countably infinite family, indexed by the Fourier parameter $n$, of null control problems of parabolic equations, tackled, once again, with the moments method.

Page generated in 0.0931 seconds