1 |
Distribution Network Modeling and Capacitor Placement ApplicationSu, Yuh-Sheng 14 August 2002 (has links)
Enhancing the quality of services in the distribution system is an important topic for power system research. It is imperative to employ precise network modeling and effective simulation tools, and a good system model is the key. This dissertation starts with modifying the building algorithms of Y-admittance and Z-impedance matrices. The Y-matrix will be built according to phase sequences. With the facts that the line self-impedance is significantly greater than the mutual-coupling terms and the existence of a high r/x ratio in distribution, two decoupled load flow methods (Phase-Decoupled¡BPD and Sub-Phase-Decoupled¡BSPD) with Current Injection Model(CIM) were developed. A new Z-matrix building algorithm was also developed in this dissertation. It decomposed the traditional Z into two sub-matrices, the upper and lower triangular matrices respectively. The matrices represent the relationships between the branch current and the bus injection current, and between the bus voltage and the branch current.
Enhancing the quality of services will be effectively achieved by a proper capacitor placement technique. This dissertation develops a linear relationships of voltage changes versus the capacitor compensation, the branch current changes versus the capacitor compensation, and loss reductions versus the capacitor compensation. For loss reduction, a linear optimization function was defined to solve the capacitor placement problem. Tests have shown that the proposed methods were suitable for applications to an unbalance distribution system.
|
Page generated in 0.0287 seconds