• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 8
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Advancement of Erosion Testing, Modeling, and Design of Concrete Pavement Subbase Layers

Jung, Youn Su 2010 August 1900 (has links)
Concrete pavement systems have great capacity to provide long service lives; however, if the subbase layer is improperly designed or mismanaged, service life would be diminished significantly since the subbase layer performs many important roles in a concrete pavement system. The erosion of material beneath a concrete slab is an important performance-related factor that if applied to the selection of base materials can enhance the overall design process for concrete pavement systems. However, erosion of the subbase has not been included explicitly in analysis and design procedures since there is not a well accepted laboratory test and related erosion model suitable for design. Previous erosion test methods and erosion models are evaluated in terms of their utility to characterize subbase materials for erosion resistance. With this information, a new test configuration was devised that uses a Hamburg wheel-tracking device for evaluating erodibility with respect to the degree of stabilization and base type. Test devices, procedures, and results are explained and summarized for application in mechanistic design processes. A proposed erosion model is calibrated by comparing erosion to lab test results and LTPP field performance data. Subbase design guidelines are provided with a decision flowchart and a design assistant spread sheet for the economical and sustainable design of concrete pavement subbase layers by considering many design factors that affect the performance of the subbase.
2

Resilient Moduli of Flexible Pavement Materials

Lam, Andrew 04 1900 (has links)
<p> The behaviour of asphaltic concrete, granular base and subbase materials, and subgrade soils in repeated dynamic loading is best represented by their resilient moduli in rational flexible pavement designs. The recoverable, or resilient, strains in pavement structures due to repetitions of moving traffic loads can be predicted through the use of appropriate material parameters in analytical or numerical models of pavement response. It appears that the repeated-load triaxial test offers the most promising means of applying simulated field loading conditions to representative samples of flexible pavement components. This testing of laboratory or field prepared samples provides a good estimate of the material 1 s overall dynamic behaviour and the desired resilient modulus and Poisson's ratio for design analyses. The purpose of this research was to simulate field loading conditions for a range of typical Southern Ontario granular base and subbase materials by means of repeated-load, variable and constant confining pressure, triaxial tests using laboratory research equipment readily adaptable to regular design use. The pavement materials were characterized in a condition corresponding to optimum density and moisture content with repeated loadings representative of field stress conditions of 0.1 second pulse duration at a frequency of 20 cycles per minute. In addition to determining the resilient modulus and Poisson 1 s ratio for four basic conditions -unsaturated drained, unsaturated undrained, partially saturated drained, partially saturated undrained -the results were examined for significant trends. The characterization of typical base, subbase and subgrade materials for Southern Ontario, coupled with previous work on asphaltic concrete, allows the use of representative moduli for all flexible pavement components in Ontario pavement design systems such as OPAC. </p> / Thesis / Master of Engineering (ME)
3

Behaviour of cementitious subbase layers in bitumen base road structures

De Beer, Morris 04 August 2009 (has links)
The process of designing cementitious layers (weakly and strongly cemented) against fatigue distress in road structures is well accepted. Research and field investigations with the aid of the Heavy Vehicle Simulator (HVS) revealed, however, that almost all weakly cemented subbase layers undergo non-traffic and traffic¬associated cracking and eventually degradation of the cemented material into a granular state (post-cracked phase). It is therefore very important to analyse these layers in the post-cracked phase and to incorporate the results of this analysis in the design, for both new and rehabilitation designs. The investigations revealed that the rate of degradation of these materials is largely dependent on traffic loading and the moisture conditions within the pavement layers. The purpose of this study is to investigate the behaviour of weakly cemented subbase layers in road structures mainly under a bitumen base between 90 mm and 140 mm thick. This behaviour includes both pre-cracked and post-cracked phases. It is shown that the fatigue life of bitumen base layers is mainly governed by the condition of the weakly cemented subbase layers. In Chapter 1 a brief historical review is given of the development of fatigue distress criteria of the cementitious layers. It is shown that the maximum horizontal tensile strain at the bottom of these layers is the main distress criterion in the pre-cracked phase. Unconfined compressive strength and durability requirements are also discussed. Some aspects of the current design methods are outlined in Chapter 2. The concept of equivalent granular states in the post-¬cracked phase of cementitious layers was derived from HVS test findings. However, before this document no behavioural prediction models were available to quantify accurately the post-cracked state of these layers. The actual mechanisms of distress were also not clear. In Chapter 3, a detailed investigations and analysis of ten dif¬ferent HVS tests at four different sites in Natal are discussed. The purpose of the analysis, is firstly to illustrate the powerful method of full-scale accelerated HVS-type testing and secondly to indicate the importance of the upper subbase layer, the initial condition of the in-situ structure, the importance of water condi¬tions within the pavement structure, and finally the different states of behaviour of this type of road structure, including predictions of future behaviour based on linear elastic theory. The characteristics of the weakly cemented upper subbase layer are shown to be of paramount importance in the final behaviour of these structures. In Chapter 4 a method of analysing the behaviour of mainly weakly cemented layers in the post-cracked phase is proposed. This method arises from the HVS testing discussed in Chapter 3, and may be regarded as the most important improvement on the current method discussed in Chapter 2. The analysis incorporates the determination of the effective elastic moduli of weakly cemented subbase layers, including both the wet and the dry periods during the structural design period of these layers. In Chapter 5 the effect of relatively weak interlayers within asphalt base structures is discussed and evaluated. The analysis incorporates the relative position and thickness of the inter layer during both wet (low modulus) and dry (high modulus) conditions. A summary and detailed discussion, together with recommendations for future research, are given in Chapter 6. The need for the incorpo¬ration of durability (erodibility) criteria for weakly cemented materials is also discussed. More research should be done on the effects of accelerated curing compared with normal curing methods. This investigation includes aspects of soil-lime-cement reactions together with delayed compaction techniques to reduce shrinkage cracking. The need for better quality control as well as improved construction techniques for weakly cemented materials is also discussed. This thesis also contains two appendices. In the first of these detailed photographic records of the different HVS tests and performances are given. In the second appendix an example of an input computer program to plot the three dimensional behavioural model is given. / Dissertation (MEng)--University of Pretoria, 2009. / Civil Engineering / unrestricted
4

Development Of Design Equations For A Square-tube Subbase Supporting A Shaft-mounted Speed Reducer

Brown, William E. III 18 January 2002 (has links)
Shaft mounted speed reducers are used in material handling applications, such as conveyor systems for transporting ore out of mine shafts. A subbase joins the reducer with an electric motor, and serves to limit the misalignment between the motor shaft and the reducer input shaft. The entire assembly is supported at two points: the axis of rotation of the reducer output shaft, which is fixed, and a clevis-pin joint under the motor, which prevents rotation of the assembly about the reducer output shaft axis. In an effort to reduce the production and material costs of subbases that support shaft mounted reducers, Rexnord Corp. is implementing subbase designs that are lighter weight and easier to manufacture than current designs. Impeding the implementation of lower cost designs is the lack of an equation to properly choose subbase dimensions for acceptable values of shaft misalignment. Trial and error in subbase construction may provide designs that give acceptable results for misalignment. Given an equation, however, the weight could be minimized while still limiting misalignment at the coupling location. The project goal is to provide equations that give shaft misalignment as a function of three subbase parameters: tube thickness, mounting strap width, and end cap thickness. Developing design equations by analytical methods is investigated first. Next, finite element models are used to check the analytical results for accuracy. Finally, finite element models are used to perform design sensitivity studies where needed. The final equations for misalignment are given as functions of the three design variables. / Master of Science
5

High Performance Granular Base and Subbase Materials Incorporating Reclaimed Asphalt Concrete Pavement

Luo, Cong January 2014 (has links)
This study focused on the material characterization of granular materials containing different percentages of “RAP”. A series of laboratory tests results were carried out to determine the physical and mechanical properties of natural aggregates and various aggregate-RAP blends. The results were used to evaluate methods to develop high-performance granular layer for pavement construction through proper compaction and control of RAP usage. The resilient modulus and accumulative deformation characteristics were determined in relation to RAP content, relative density, compaction method, stress level, stress state and the number of load applications. The effects of RAP content and density on the CBR values of aggregate-RAP blends under various conditions were also investigated. In addition, the effect of small strain cyclic loading on shear strength of aggregate-RAP blends was observed in laboratory tests. Results from this investigation demonstrated that: 1) adding RAP to natural aggregates may increase the resilient modulus of natural aggregates, and optimum content can be found to achieve the highest resilient modulus; 2) resilient modulus generally increases with density; higher density of aggregate-RAP blends can be achieved by using methods combining vibration and static loading. 3) deviatoric stress has more pronounced influence on accumulative deformation than confining pressure. 4) proper compaction method can reduce accumulative deformation of samples. 5) addition of RAP into aggregates results in little change in accumulative deformation when the RAP content is less than a threshold. 6) CBR value decreases with increasing RAP content and decreasing compaction effort or compacted dry density. 7) shear strength of an aggregate-RAP blend tends to increase after small strain cyclic loading. / Thesis / Master of Applied Science (MASc)
6

Design and Construction of Pavements in Cold Regions: State of the Practice

Smith, Brad Steven 07 December 2006 (has links) (PDF)
The effects of frost action introduce many challenges in the design and construction of roadways in cold regions throughout the United States. The penetration of frost into pavement structures can lead to differential frost heave during winter and thaw weakening during spring. Both of these damage mechanisms lead to premature pavement distress, structural deterioration, and poor ride quality. Because the availability of naturally occurring non-frost-susceptible pavement base materials is rapidly diminishing in many areas while project budgets remain largely inadequate, pavement engineers are utilizing alternative materials and techniques to minimize such damage. The purpose of this research was to investigate and document the state of the practice concerning the design and construction of pavements in cold regions. In particular, the various methods and standards employed for characterizing materials, improving soils and aggregates, and determining pavement layer thicknesses were explored. A comprehensive literature review was performed, and a questionnaire survey was conducted of various state DOTs throughout the United States that are involved with the design and maintenance of roadways. The study was directed primarily at identifying practices utilized by state DOTs in climates with freezing temperatures. The information obtained in this research represents a unique compilation of standards of practice that have been developed by DOTs based on years of experience and research in their respective jurisdictions. While this research allows engineers at state DOTs to compare their pavement design and construction practices with those of other states represented in the survey, consulting engineers and engineers in local governments involved in characterizing materials, improving soils and aggregates, and determining pavement layer thicknesses can also benefit from this work.
7

Experimentální zkoušení modulu pružnosti podkladních vrstev vozovek / Experimental testing of elasticity modulus for base layers of pavements

Kotas, Vojtěch January 2017 (has links)
The thesis is focused on experimental testing of resilient modulus Mr with triaxial test of chosen unbounded and bounded mixtures used in the sub-base layer of pavement. The reason of testing is to compare results with TP 170 – pavement construction guide containing commonly used values of resilient modulus Mr. Thesis should check if those values are correct and real. For classification of chosen materials there are used another tests like grain size distribution, compaction, California bearing ratio CBR for unbounded mixtures and compressive strength for cement-bounded mixtures.
8

Návrh nosné konstrukce ŽB objektu garáží / RC load-bearing structure design of car park

Kudrna, Jan January 2016 (has links)
The diploma thesis deals with the design and assessment of reinforced concrete structure supporting two-storey building of the underground garage for cars. In the space above the garage is designed open area with public space. The project was designed especially outer water-impermeable construction method white bath and a base plate and a perimeter wall. The structure was designed as a comprehensive model. Computing analyzed by finite element method. All selected elements were assessed at the ultimate limit state and limit state, namely to limit state of cracking load and forced stress.

Page generated in 0.0273 seconds