• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 17
  • 7
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modelling air―water flows in bottom outlets of dams

Liu, Ting January 2014 (has links)
If air is entrained in a bottom outlet of a dam in an uncontrolled way, the resulting air pockets may cause problems such as blowback, blowout and loss of discharge capacity. In order to provide guidance for bottom outlet design and operation, this study examines how governing parameters affect air entrainment, air-pocket transport and de-aeration and the surrounding flow structure in pipe flows. Both experimental and numerical approaches are used. Air can be entrained into the bottom outlet conduit due to vortex formation at the intake if the intake submergence is not sufficient. The influent of the intake entrance profiles and channel width on the critical submergence were studied in the experiment. The experimental study was performed to investigate the incipient motion of air pockets in pipes with rectangular and circular cross sections. The critical velocity is dependent on pipe slope, pipe diameter, pipe roughness and air-pocket volume. If the pipe is horizontal, air removal is generally easier in a rectangular pipe than in a circular pipe. However, if the pipe is downward-inclined, air removal is easier in a circular pipe. When a bottom outlet gate opens, air can become entrained into the conduit in the gate shaft downstream of the gate. Using FLUENT software, the transient process of air entrainment into a prototype bottom outlet during gate opening is simulated in three dimensions. The simulations show in the flow-pattern changes in the conduit and the amount of air entrainment in the gate shaft. The initial conduit water level affects the degree of air entrainment. A de-aeration chamber is effective in reducing water surface fluctuations at blowout. High-speed particle image velocimetry (HSPIV) were applied to investigate the characteristics of the flow field around a stationary air pocket in a fully developed horizontal pipe flow. The air pocket generates a horseshoe vortex upstream and a reverse flow downstream. A shear layer forms from the separation point. Flow reattachment is observed for large air pockets. The air―water interface moves with the adjacent flow. A similarity profile is obtained for the mean streamwise velocity in the shear layer beneath the air pocket. / <p>QC 20140211</p>
12

Zhodnocení kapacity nízkých přelivů při převádění extrémních průtoků / Capacity evaluation of the extremely hydraulically loaded low weirs

Jobánek, Stanislav January 2014 (has links)
The thesis deals with values of overfall discharge coefficients for commonly used types of low weirs. Comparison of their values with values based on established procedures. Determination of low weir capacity at free and submerged overfall.
13

Physcial hydraulic model investigation of critical submergence for raised pump intakes

Kleynhans, S. H. 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Various design guidelines have been published over the past four decades to calculate the minimum submergence required at pump intakes to prevent vortex formation. These design guidelines also require the suction bell to be located not higher than 0.5 times the suction bell diameter (D) above the floor. Sand trap canals are an integral part of large river abstraction works, with the pump intakes located at the end of the sand trap canals. The canals need to be flushed by opening a gate, typically 1.5 m high, that is located downstream of the pump intake. This requires the suction bell be raised to not interfere with the flushing operation, which leads to the question – what impact does the raising of the suction bell have on the minimum required submergence? A physical hydraulic model constructed at 1:10 scale was used to determine the submergence required to prevent types 2, 5 and 6 vortices for prototype suction bell inlet velocities ranging from 0.9 m/s to 2.4 m/s, and for suction bells located at 0.5D, 1.0D and 1.5D above the floor. The tests were undertaken for four suction bell configurations with a conventional flat bottom suction bell, fitted with a long radius bend, being the preferred suction bell configuration in terms of the lowest required submergence levels. The experimental test results of the preferred suction bell configuration were compared against the published design guidelines to determine which published formula best represents the experimental test results for raised pump intakes. It became evident from the experimental test results that the required submergence increased markedly when the suction bell was raised higher than a certain level above the floor. It was concluded that this “discontinuity” in the required submergence occurred for all the suction bell configuration types when the ratio between the prototype bell inlet velocity and the approach canal velocity was approximately 6.0 or higher. It is recommended that, for pump intakes with a similar geometry to that tested with the physical hydraulic model, critical submergence is calculated using the equation published by Knauss (1987), i.e. S = D(0.5 + 2.0Fr), if the prototype bell inlet velocity/approach canal velocity ratio is less than 6.0, and that the equation published by the Hydraulic Institute (1998), i.e. S = D(1 + 2.3Fr), can be used where the ratio, as determined with Knauss’ (1987) equation, exceeds 6.0. It is also recommended that prototype bell inlet velocities be limited to 1.5 m/s. / AFRIKAANSE OPSOMMING: Oor die afgelope vier dekades is verskeie ontwerpriglyne vir die berekening van minimum watervlakke, om werwelvorming by pompinlate te voorkom, gepubliseer. Hierdie ontwerpriglyne vereis dat die klokmond van die pompinlaat nie hoër as 0.5 keer die deursnee van die klokmond (D) bokant die kanaalvloer geleë moet wees nie. Sandvang kanale vorm ‘n integrale deel van groot riveronttrekkingswerke, met pompinlate wat aan die einde van hierdie kanale geleë is. Die kanale word aan die stroomaf kant van die pompinlaat voorsien met sluise sodat die kanale gespoel kan word. Hierdie sluise is tipies 1.5 m hoog. Dit is derhalwe nodig om die hoogte onder die klokmond dieselfde te maak as die hoogte van die sluis sodat die klokmond die spoelwerking nie beïnvloed nie. Die vraag is egter – wat is die impak op die minimum vereiste watervlakke indien die klokmond op ‘n hoër vlak installeer word? ‘n Fisiese hidrouliese model met ‘n 1:10 skaal is gebruik om die minimum watervlakke te bepaal waar tipes 2, 5 en 6 werwels aangetref word vir prototipe inlaatsnelhede van 0.9 m/s tot 2.4 m/s en klokmond hoogtes van 0.5D, 1.0D en 1.5D bokant die kanaalvloer. Vier klokmond konfigurasies is getoets. Die minimum vereiste watervlakke was die laagste vir die tradisionele plat klokmond met ‘n lang radius buigstuk en was dus die voorkeur klokmond. Die eksperimenttoetsresultate vir die voorkeur klokmond is met die gepubliseerde ontwerpriglyne vergelyk om te bepaal watter van die ontwerpsriglyne van toepassing sal wees vir verhoogde klokmond installasies. Uit die eksperimenttoetsresultate is dit duidelik dat die vereiste watervlakke skielik verhoog sodra die klokmond installasie ‘n seker hoogte bokant die kanaal vloer oorskry. Daar is bevind dat hierdie verskynsel by al vier klokmond konfigurasies voorkom sodra die verhouding tussen die prototipe klokmond inlaatsnelheid teenoor die snelheid in die kanaal hoër as 6.0 is. Daar word aanbeveel dat die minimum vereiste watervlak vir pompinlate met dieselfde geometrie as die fisiese model, met Knauss (1987) se vergelyking bereken word, naamlik S = D(0.5 + 2.0Fr), waar die snelheidsverhouding tussen die klokmond en kanaal 6.0 nie oorskry nie, en dat die vergelyking gepubliseer deur die Hydraulic Institute (1998), S = D(1 + 2.3Fr), gebruik word waar die snelheidsverhouding 6.0, so bereken met Knauss (1987) ser vergelyking, wel oorskry. Die prototipe klokmond inlaatsnelheid moet ook beperk word tot 1.5 m/s.
14

Submergence effects on jet behavior in scour by a plane wall jet

Gautam, Bishnu Prasad 01 April 2008
In this study, the effects of submergence on local scour in a uniform cohesionless sediment bed by a plane turbulent wall jet and the resulting flow field were investigated experimentally. Here, submergence is defined as the ratio of the tailwater depth to the thickness of the jet at its origin. The main focus was to determine scour dimensions at an asymptotic state, examine whether there was similarity in the velocity profiles for the flow in the scour hole, and to determine the growth of the length scales and decay of the maximum velocity of the jet. Also examined were the relationships between the scales for the velocity field in the scour hole and the scour hole size.<p>In the experiments, the range of submergence was varied from 3-17.5, whereas the range of densimetric Froude number and the ratio of the boundary roughness to the gate opening (relative boundary roughness) were varied from 4.4-6.9 and 0.085-0.137 respectively. The velocity field in the scour hole at asymptotic state was measured using a SonTek 16-MHz MicroADV. Time development of the characteristic dimensions of the scour hole was also measured.<p>The dimensions of the scour hole were found to increase with increasing submergence for all experiments with a bed-jet flow regime. In the bed-jet flow regime, the jet remains near the bed throughout the scouring process. Further, the time development of the scour hole dimensions were observed to increase approximately linearly with the logarithm of time up to a certain time before the beginning of asymptotic state for experiments with either the bed-jet or surface-jet flow regimes.<p> The flow field results showed that the velocity profiles in the region of forward flow and the recirculating region above the jet were similar in shape up to about the location of the maximum scour depth. Relationships describing this velocity profile, including its velocity and length scales, were formulated. The decay rate of the maximum velocity, the growth of the jet half-width, and the boundary layer thickness were also studied. The decay and the growth rate of the jet length scales were found to be influenced by the submergence ratio, densimetric Froude number, and the relative boundary roughness.<p>Two distinct stages in the decay of the maximum streamwise velocity, with distance along the direction of flow, were observed for the jet flows having a bed-jet flow regime. The first stage of velocity decay was characterized by a curvilinear decay of velocity, which followed that of a wall jet on a smooth, rigid bed for streamwise distance approximately equal to 2L. For the surface-jet flow regime, the decay of velocity was observed to be similar to that of a free-jump on a smooth, rigid bed for a streamwise distance approximately equal to L. Here, L is defined as the streamwise distance measured from the end of the rigid apron to where the maximum streamwise velocity in the jet is half the velocity of the jet at the end of apron. The streamwise maximum velocity of the jet was then seen to increase in what was called the recovery zone.<p>A relationship for the streamwise decay of the maximum velocity within the scour hole is proposed. Moreover, other scales representing the flow inside the scour hole such as the streamwise distance from the end of the apron to where the streamwise maximum velocity starts to deviate from curvilinear to linear decay and the streamwise distance to where maximum streamwise velocity starts to increase are suggested. Some new results on the velocity distribution for the reverse flow for a bed-jet flow regime are also presented. Finally, some dimensionless empirical equations describing the relationship between the jet scales for the jet flow in a scour hole and the scour hole size are given.
15

Submergence effects on jet behavior in scour by a plane wall jet

Gautam, Bishnu Prasad 01 April 2008 (has links)
In this study, the effects of submergence on local scour in a uniform cohesionless sediment bed by a plane turbulent wall jet and the resulting flow field were investigated experimentally. Here, submergence is defined as the ratio of the tailwater depth to the thickness of the jet at its origin. The main focus was to determine scour dimensions at an asymptotic state, examine whether there was similarity in the velocity profiles for the flow in the scour hole, and to determine the growth of the length scales and decay of the maximum velocity of the jet. Also examined were the relationships between the scales for the velocity field in the scour hole and the scour hole size.<p>In the experiments, the range of submergence was varied from 3-17.5, whereas the range of densimetric Froude number and the ratio of the boundary roughness to the gate opening (relative boundary roughness) were varied from 4.4-6.9 and 0.085-0.137 respectively. The velocity field in the scour hole at asymptotic state was measured using a SonTek 16-MHz MicroADV. Time development of the characteristic dimensions of the scour hole was also measured.<p>The dimensions of the scour hole were found to increase with increasing submergence for all experiments with a bed-jet flow regime. In the bed-jet flow regime, the jet remains near the bed throughout the scouring process. Further, the time development of the scour hole dimensions were observed to increase approximately linearly with the logarithm of time up to a certain time before the beginning of asymptotic state for experiments with either the bed-jet or surface-jet flow regimes.<p> The flow field results showed that the velocity profiles in the region of forward flow and the recirculating region above the jet were similar in shape up to about the location of the maximum scour depth. Relationships describing this velocity profile, including its velocity and length scales, were formulated. The decay rate of the maximum velocity, the growth of the jet half-width, and the boundary layer thickness were also studied. The decay and the growth rate of the jet length scales were found to be influenced by the submergence ratio, densimetric Froude number, and the relative boundary roughness.<p>Two distinct stages in the decay of the maximum streamwise velocity, with distance along the direction of flow, were observed for the jet flows having a bed-jet flow regime. The first stage of velocity decay was characterized by a curvilinear decay of velocity, which followed that of a wall jet on a smooth, rigid bed for streamwise distance approximately equal to 2L. For the surface-jet flow regime, the decay of velocity was observed to be similar to that of a free-jump on a smooth, rigid bed for a streamwise distance approximately equal to L. Here, L is defined as the streamwise distance measured from the end of the rigid apron to where the maximum streamwise velocity in the jet is half the velocity of the jet at the end of apron. The streamwise maximum velocity of the jet was then seen to increase in what was called the recovery zone.<p>A relationship for the streamwise decay of the maximum velocity within the scour hole is proposed. Moreover, other scales representing the flow inside the scour hole such as the streamwise distance from the end of the apron to where the streamwise maximum velocity starts to deviate from curvilinear to linear decay and the streamwise distance to where maximum streamwise velocity starts to increase are suggested. Some new results on the velocity distribution for the reverse flow for a bed-jet flow regime are also presented. Finally, some dimensionless empirical equations describing the relationship between the jet scales for the jet flow in a scour hole and the scour hole size are given.
16

Drawdown of Floating Solids in Liquid by Means of Mechanical Agitation:Effect of System Geometry

Pandit, Anand Kumar 29 May 2013 (has links)
No description available.
17

Generische numerische Untersuchungen der kritischen Überdeckung der Ansaugstutzen von Pumpen zur Vermeidung von Luftmitriss

Pandazis, Peter 23 February 2024 (has links)
Im Rahmen der Dissertation wurde ein neues und effektives Verfahren entwickelt, um die Oberflächenwirbelbildung an Ansaugstutzen von Pumpen in großen, komplexen Becken (wie z. B. Gebäudesumpf oder Flutbehälter) zu untersuchen so-wie deren charakteristischen Größe, die kritische Überdeckung, zu bestimmen. Die kritische Überdeckung ist die minimale Überdeckung, über die eine Oberflächenwir-belbildung sich ausschließen lässt. Durch die verursachte Strömungsinhomogenität und durch mitgerissene Luft kann die Oberflächenwirbelbildung die Förderleistung der Pumpen stark einschränken und langfristig sogar Pumpenschäden hervorrufen. Deshalb die Sicherstellung eine wirbelfreie Ansaugung ist für einen sicheren Pum-penbetrieb erforderlich. In Leichtwasserreaktoren ist der sichere und langfristige Betrieb der Not- und Nach-kühlsysteme besonders wichtig, um die Einhaltung des kerntechnischen Schutzzie-les, Kühlung der Brennelemente, zu gewährleisten. Die Pumpen dieser Systeme för-dern unter Störfallbedingungen aus großen und komplexen Sicherheitsbehältern bzw. Sümpfen das Kühlwasser, wobei die Vorhersage der kritischen Überdeckung sehr schwierig ist. Für industrielle Prozesse wird die kritische Überdeckung entweder mit aufwendigen Experimenten oder mit einfachen empirischen und semiempirischen Korrelationen abgeschätzt. Auch die Deutsche Reaktor-Sicherheitskommission (RSK) empfiehlt im Falle des Sumpfbetriebs einer Anlage mit Druckwasserreaktor die Durchführung von großskaligen Experimenten, um die kritische Überdeckung zu ermitteln. Nach der Empfehlung der RSK kann beim Fehlen experimenteller Daten auf die einfache, anhand von Experimenten und analytischen Modellen abgeleitete ANSI-Korrelation zurückgegriffen werden. Das im Rahmen dieser Arbeit entwickelte CVA-Verfahren (Combined Vortex Analy-ses) basiert auf der Kombination von numerischen CFD-Simulationen mit dem analytischen Wirbelmodell von Burgers-Rott und bietet damit eine alternative und effektive Methode zur Bestimmung der kritischen Überdeckung samt weiterer wesentliche Parameter eines Oberflächenwirbels wie z. B. Zirkulation, Luftkernlänge und Tangentialgeschwindigkeitsverteilung. Die CFD-Methoden sind in der Lage die Strömungsparameter außerhalb der Wirbelkernregion auch in komplexen Anlagen zu berechnen. Die CFD-Berechnung der Wirbelkernregion eines Oberflächenwirbels inkl. der Luft-kernbildung erfordert jedoch sehr hohen Rechenaufwand. Das Wirbelmodell von Burgers und Rott dagegen kann die Luftkernlänge von Oberflächenwirbeln analytisch bestimmen, wenn die Zirkulation und der sog. Saugparameter außerhalb der Wirbel-kernregion bekannt sind. Im CVA-Verfahren werden diese Parameter mit dem CFD-Code ANSYS-CFX berechnet und in analytische Gleichungen, abgeleitet aus dem Burgers-Rot-Modell, eingesetzt. Basierend auf den Ergebnissen von zwei geeigneten CFD-Simulationen kann das CVA-Verfahren die kritische Überdeckung für eine breites Parameterspektrum, wie z. B. den Ansaugmassenstrom, analytisch berechnen. Die Validierung des CVA-Verfahrens erfolgte in dieser Arbeit anhand von zwei Experimenten für vertikale Ansaugstutzen. In dem Experiment von Moriya wurden die Typen der Oberflächenwirbel bestimmt und deren lokale Parameter gemessen. Anhand der Ergebnisse werden die erforderlichen physikalischen Modelle, Rand-bedingungen und weitere Modellparameter für die CFD-Simulationen festgelegt. Des Weiteren wird das CVA-Verfahren zur Berechnung der Luftkernlänge eines Oberflächenwirbels anhand der Moriya-Versuche erfolgreich validiert. Die Bestimmung der Luftkernlänge ist ein wichtiger Schritt des CVA-Verfahrens und ermöglicht die analytische Berechnung der kritischen Überdeckung. Das zweite Experiment zur Validierung wurde von Jain et al. durchgeführt. In diesem Experiment wurde die kritische Überdeckung für ein breites Spektrum diverser Ein-flussparameter gemessen. Auf der Basis dieser experimentellen Ergebnisse wird das CVA-Verfahren erfolgreich validiert, um die kritische Überdeckung bei unterschiedlichen Ansauggeschwindigkeiten, Zirkulationen, Viskositäten und Saugleitungsdurchmessern zu ermitteln. Des Weiteren wird eine einfache analytische Korrelation, nachfolgend CVA-Formel genannt, basierend auf dem CVA-Verfahren abgeleitet. Diese beschreibt den analytischen Zusammenhang zwischen der kritischen Überdeckung, der Froude-Zahl und dem Saugleitungsdurchmesser und berücksichtigt die Zirkulation durch eine vorgegebene Konstante. Im Rahmen der Nachrechnung der Versuche von Jain et al. wird diese Konstante für drei Fälle ermittelt. Das validierte CVA-Verfahren wird zunächst eingesetzt, um in den industriellen Prozessen häufig verwendete einfache Korrelationen zur Berechnung der kritischen Überdeckung zu untersuchen und deren Konservativitäten zu quantifizieren. Aus der Literatur wurde, neben der auch in der kerntechnischen Verfahren ange-wendete Korrelation von ANSI, die Korrelation von Odgaard, Rindells und Gulliver, Jain et al. und Knauss für die Analysen ausgewählt. Die Anwendung dieser Korrelationen sind nur in einem bestimmten Parameterbereich zulässig. Die Vergleichsanalysen haben die Konservativitäten, Einschränkungen sowie das Erweiterungspotential der Anwendungsbereiche der Korrelationen erfolgreich aufgezeigt. Darüber hinaus wird die Anwendungsgrenze der ANSI-Korrelation für die Zirkulation bestimmt und belegt, dass das CVA-Verfahren auch in kerntechnische Verfahren angewendet werden kann. Zuletzt wird das CVA-Verfahren angewendet, um die Problematik der Oberflächen-wirbelbildung im Sicherheitsbehältersumpf eines Vor-Konvoi-Druckwasserreaktors zu untersuchen. In dem postulierten Störfallszenario befindet sich das Not- und Nach-kühlsystem (TH-System) der Anlage im Sumpfbetrieb. Oberhalb der Saugstutzen der TH-Pumpen befindet sich eine Betondecke, die bei Sumpffüllstand oberhalb dieser Decke eine wirbelbrechende Maßnahme ist. Deshalb wurde zuerst ein Störfallszenario mit dem CFD-Code ANSYS-CFX untersucht, wobei der Füllstand des Sumpfs oberhalb der Betondecke liegt. In den Analysen wird ein Leckstörfall mit 400 cm2 Leckage im Kaltstrang des Primärkühlkreises betrachtet, bei dem nur 2 TH-Pumpen, jeweils mit einem Ansaugmassenstrom von 300 kg/s in Betrieb sind. Die Simulationen zeigen eine starke Wirbelbildung in den in Betrieb befindlichen Sumpfkammern ohne dass sich jedoch luftziehende Wirbel ausbilden. Anschließend wird die Bildung luftziehender Wirbel für Sumpffüllstände unterhalb der Betondecke untersucht. Um die Parameter für den analytischen Teil des CVA-Verfahrens zu bestimmen, werden CFD- Simulationen mit zwei unterschiedlichen TH-Massenströmen durchgeführt. Anhand der Ergebnisse der zwei CFD-Simulationen gelingt es mit dem CVA-Verfahren die kritische Überdeckung der TH-Pumpen für den gesamten Massenstrombereich zu berechnen. Damit wird die Anwendung des CVA-Verfahrens für große, komplexe Anlage erfolgreich demonstriert. Die durchgeführten Analysen bestätigen die vielseitigen Anwendungsmöglichkeiten des neuen Verfahrens und zeigen, dass das CVA-Verfahren für die kerntechnische Nachweisführung eine effektive Alternative ist.:Inhaltsverzeichnis Abstract I Kurzfassung IV Vorwort VII Inhaltsverzeichnis VIII Formelzeichen XI Bildverzeichnis XIV Tabellenverzeichnis XVII 1 Einleitung 1 2 Stand des Wissens 6 2.1 Theoretische Grundlagen von Wirbeln 6 2.2 Analytische Wirbelmodelle 11 2.2.1 Modell von Rankine 12 2.2.2 Modell von Burgers und Rott 12 2.2.3 Modell von Ito et al. 14 2.3 Experimentelle Untersuchungen 15 2.3.1 Experiment von Moriya 18 2.3.2 Experiment von Jain et al. 20 2.4 Auslegungsempfehlungen und Korrelationen 23 2.4.1 Korrelation von Odgaard 25 2.4.2 Korrelation von Jain et al. 26 2.4.3 Korrelation von Knauss 27 2.4.4 Korrelation von Rindels und Gulliver 28 2.4.5 ANSI Korrelation 29 2.4.6 Vergleich der Korrelationen für eine vertikale Ansaugung 30 2.5 Parameterbereich der Untersuchungen 32 3 Neues Verfahren zur Bestimmung der kritischen Überdeckung 35 3.1 Grundsätzliche Herangehensweise an eine CFD-Simulation 35 3.1.1 Lösungsverfahren 36 3.1.2 Modellierung der Turbulenz 39 3.1.3 Zweiphasenmodellierung 42 3.2 Relevante veröffentlichte CFD Analysen und eigene Vorstudien 44 3.2.1 Erkenntnisse aus relevanten, veröffentlichten CFD-Analysen 45 3.2.2 Eigene Vorstudien zur Simulation von Oberflächenwirbeln mit ANSYS CFX 47 3.3 CVA-Verfahren 48 3.3.1 Identifizierung von Oberflächenwirbeln in CFD-Simulationen 49 3.3.2 Bestimmung der Zirkulation aus den CFD-Ergebnissen 51 3.3.3 Bestimmung der Saugparameter aus den CFD-Ergebnissen 52 3.3.4 Berechnung der kritischen Überdeckung 54 4 Validierung des CVA-Verfahrens anhand von Experimenten 59 4.1 Validierung anhand der Versuche von Moriya 60 4.1.1 CFD-Modell 60 4.1.1.1 Optimierung des Rechengitters 62 4.1.1.2 Sensitivitätsanalyse zur Turbulenzmodellierung 67 4.1.2 Ergebnisse der Validierungsrechnungen anhand des Moriya Versuches 72 4.2 Validierung und Parameteruntersuchung anhand der Versuche von Jain et al. 75 4.2.1 CFD-Modell und Anwendung des CVA-Verfahrens 75 4.2.2 Ergebnisse der Validierungsrechnungen und der Parameteruntersuchung 78 4.2.2.1 Einfluss des Anströmwinkels 79 4.2.2.2 Einfluss des Saugleitungsdurchmessers 80 4.2.2.3 Einfluss der Viskosität 83 4.2.2.4 Einfluss der Zirkulation 85 4.3 Ableitung einer analytischen Korrelation zur Abschätzung der kritischen Überdeckung 86 4.4 Fazit der Validierung und Empfehlungen zur Anwendung des CVA-Verfahrens 88 5 Anwendung des neuen CVA-Verfahrens 90 5.1 Analyse der Korrelationen zur Berechnung der kritischen Überdeckung 91 5.1.1 Analyse der Korrelation von Jain et al. 91 5.1.2 Analyse der Korrelation von Odgaard 93 5.1.3 Analyse der Korrelation von Knauss 95 5.1.4 Analyse der Korrelation von Rindels und Gulliver 96 5.1.5 Analyse der Korrelation von ANSI 98 5.1.6 Fazit der Analysen der Korrelationen zur Berechnung der kritischen Überdeckung mit dem CVA-Verfahren 102 5.2 Analyse der Sumpfansaugung bei Druckwasserreaktoren 104 5.2.1 Beschreibung der ausgewählten Störfallszenarien 106 5.2.2 Geometriemodell des Sicherheitsbehälters 108 5.2.3 Untersuchung der Sumpfansaugung bei einem 400-cm²-Leck 110 5.2.3.1 CFD-Modell 111 5.2.3.2 Ergebnisse 115 5.2.4 Bestimmung der kritischen Überdeckung der TH-Pumpen in Sumpfbetrieb mit dem CVA-Verfahren 116 5.2.4.1 CFD-Modell 117 5.2.4.2 Ergebnisse der Analysen mit dem Gesamtmodell und Bestimmung der Zirkulation 121 5.2.4.3 Ergebnisse der Simulationen mit dem Submodell und Bestimmung des Saugparameters 125 5.2.4.4 Berechnung der kritischen Überdeckung der TH-Pumpen im Sumpfbetrieb 127 6 Zusammenfassung und Ausblick 131 Literaturverzeichnis 135 Vorveröffentlichungen von Teilergebnissen 141

Page generated in 0.0612 seconds