• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Triassic to Neogene Evolution of the Andean Retroarc: Neuquén Basin, Argentina

Balgord, Elizabeth A. January 2016 (has links)
The Andes Mountains provide an ideal natural laboratory to analyze the relationship between the tectonic evolution of a subduction margin, retroarc shortening, basin morphology, and volcanic activity. Timing of initial shortening and foreland basin development in Argentina is diachronous along strike, with ages varying by 20-30 million years. The Neuquén Basin (32°S-40°S) of southern-central Argentina sits in a retroarc position and provides a geological record of sedimentation in variable tectonic settings from the Late Triassic to the early Cenozoic including: 1.) active extension and deposition in isolated rift basins in the Late Triassic-Early Jurassic; 2.) post-rift back-arc basin from Late Jurassic-Late Cretaceous; 3.) foreland basin from Late Cretaceous to Oligocene; and 4.) variable extension and contraction along-strike from Oligocene to present. The goal of this study is to determine the timing of the transition from post-rift thermal subsidence to foreland basin deposition in the northern Neuquén Basin and then assess volcanic activity and composition during various tectonic regimes. The Aconcagua and Malargüe areas (32°S and 35°S) are located in the northern segment of the Neuquén Basin and preserve Upper Jurassic to Miocene sedimentary rocks, which record the earliest phase of shortening at this latitude. This study presents new sedimentological and detrital zircon U-Pb data from the Jurassic to latest Cretaceous sedimentary strata to determine depositional environments, stratigraphic relations, provenance, and maximum depositional ages of these units and ultimately evaluate the role of tectonics on sedimentation in this segment of the Andes. The combination of provenance, basin, and subsidence analysis shows that the initiation of foreland basin deposition occurred at ~100 Ma with the deposition of the Huitrín Formation, which recorded an episode of erosion marking the passage of the flexural forebulge. This was followed by an increase in tectonic subsidence, along with the appearance of recycled sedimentary detritus, recorded in petrographic and detrital zircons analyses, as well development of an axial drainage pattern, consistent with deposition in the flexural forebulge between 95 and 80 Ma. By ca. 70 Ma the volcanic arc migrated eastward and was a primary local source for detritus. Growth structures recorded in latest Cretaceous units very near both the Aconcagua and Malargüe study areas imply 35-40 km and 80-125 km of foreland migration between 95 and 60 Ma in the Aconcagua and Malargüe areas, respectively. Strata ranging in age from Middle Jurassic to Neogene were analyzed to determine their detrital zircon U-Pb age spectra and Hf isotopic composition to determine the relationship between magmatic output rate, tectonic regime, and crustal evolution. When all detrital zircon data are combined, significant pulses in magmatic activity occur from 190-145 Ma, and at 128 Ma, 110 Ma, 69 Ma, 16 Ma, and 7 Ma. The duration of magmatic lulls increased markedly from 10-30 million years during back-arc deposition (190-100 Ma) to ~40-50 million years during foreland basin deposition (100-~30 Ma). The long duration of magmatic lulls during foreland basin deposition could be caused by flat-slab subduction events during the Late Cretaceous and Cenozoic or by long magmatic recharge events. There are three major shifts towards positive Hf isotopic values and all are associated with regional extension events whereas compression seems to lead to more evolved isotopic values.
2

Crustal structure, gravity anomalies and subsidence history of the Parnaíba cratonic basin, Northeast Brazil

Tozer, Brook January 2017 (has links)
Cratonic basins cover more than 10% of Earth's continental surface area, yet their origin remains enigmatic. In this thesis a suite of new and legacy geophysical and geological data are integrated to constrain the origin of the Parnaíba basin, a cratonic basin in Northeast Brazil. These data include a 1400 km long, deep (20 s two-way travel time) seismic reflection profile, five +/- 110 km offset wide-angle split-spread receiver gathers, gravity anomaly, and well data. In the centre of the basin, the depth to pre-Paleozoic basement is ~ 3.3 km, a zone of midcrustal reflectivity (MCR) can be traced laterally for ~ 250 km at depths between 17-25 km and Moho depth is ~ 42 +/- 2 km. Gravity and P-wave modelling suggests that the MCR represents the upper surface of a high density (2985 kg m<sup>3</sup>) and V<sub>p</sub> (6.7 - 7.0 km s<sup>-1</sup>) lower crustal body, likely of magmatic origin. Backstripping of well data shows a concave up decreasing tectonic subsidence, similar in form to that commonly observed in rift-type basins. It is shown, however, that the seismic and gravity data are inconsistent with an extensional origin. It is shown that an intrusive body in the lower crust that has loaded and flexed the surface of the crust, combined with sediment loading, provides a satisfactory fit to the observed gravity anomaly, sediment thickness and basin shape. A buried load model is also consistent with seismic data, which suggest that the Moho is as deep or deeper beneath the basin centre than its flanks and accounts for at least part of the tectonic subsidence through a viscoelastic stress relaxation that occurs in the lithosphere following load emplacement. Comparative analysis of the Michigan and Congo basins shows gravity data from these basins is also consistent with a lower crustal mass excess, while subsidence analysis shows viscoelastic stress relaxation may also contribute to their early subsidence histories. However, unlike Parnaíba, both of these basins appear to have been subjected to secondary tectonic processes that obscure the primary 'cratonic basin' subsidence signals. Parnaíba basin, therefore, offers an excellent record for the investigation of cratonic basin formation.
3

Offshore mapping and modeling of Miocene-Recent extensional basins adjacent to metamorphic gneiss domes of the D'Entrecasteaux Islands, eastern Papua New Guinea

Fitz, Guy Gregory 15 February 2012 (has links)
The D'Entrecasteaux Island (DEI) gneiss domes are fault-bounded domes with ~2.5 km of relief exposing ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic gneisses and migmatites exhumed in an Oligocene-Miocene arc-continent collision and subduction zone subject to Late Miocene to Recent continental extension. To study the style of continental extension accompanying exhumation of the DEI gneiss domes, a grid of 1,518 km of 2-D multi-channel seismic (MCS) reflection data and well data is interpreted from the offshore areas surrounding the DEI, including the Trobriand basin and the Goodenough basin. The offshore study is combined with onshore geologic information to constrain the area's Oligocene to Recent basinal and tectonic evolution. MCS and well data show the Trobriand basin formed as a forearc basin caused by southward Miocene subduction at the Trobriand trench. Late Miocene basin inversion uplifted the southern and northern basin margins. Subduction slowed at ~8 Ma as the margin transitioned to an extensional tectonic environment. Since then, the Trobriand basin has subsided 1-2.5 km as a broad sag basin with few normal faults deforming the basin fill. South of the DEI, the Goodenough rift basin developed after extension began (~8 Ma) as the hanging-wall of the north-dipping Owen-Stanley normal fault bounding the southern margin of the basin. Rapid uplift of the adjacent footwall of the Owen-Stanley fault zone in the Papuan Peninsula accompanied the formation of the Goodenough submarine rift basin. The lack of upper crustal extension accompanying subsidence in the Trobriand and Goodenough basins suggests depth-dependent lithospheric extension from 8-0 Ma has accompanied uplift of the DEI gneiss domes. Structural reconstructions of seismic profiles show 2.3 to 13.4 km of basin extension in the upper crust, while syn-rift basin subsidence values indicate at least 20.7 to 23.6 km of extension occurred in the lower crust since ~8 Ma. Results indicating thinning is preferentially accommodated in the lower crust surrounding the DEI are used to constrain a schematic model of uplift of the DEI domes involving vertical exhumation of buoyant, post-orogenic lower crust, far-field extension from slab rollback, and an inverted two-layer crustal density structure. / text

Page generated in 0.0726 seconds