Spelling suggestions: "subject:"asubstitution lines"" "subject:"csubstitution lines""
1 |
The genetics and molecular mechanisms of tolerance to 2,4-dichlorophenoxyacetic acid (2,4-D) in upland cotton (Gossypium hirsutum L.)Perez, Loida Moreno 30 April 2021 (has links)
Upland cotton, Gossypium hirsutum L., is a natural source of fiber and a major row crop in the US with an estimated $7 billion raw product value in 2019. However, it is extremely sensitive to the broadleaf herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). With the evolution of herbicide-resistant weeds compounded by off-target spray damage on conventional cotton varieties outside the transgenic Enlist technology (Dow Agrosciences) of herbicide-tolerant cotton varieties (Dow Agrosciences), there is a need to identify and develop novel sources of herbicide tolerance gene for upland cotton genetic improvement. Cotton chromosome substitution (CS) lines carry introgressions from other cultivated and wild allotetraploid Gossypium species that could be sources of novel and exotic alleles for herbicide tolerance. A total of 50 CS lines of G. barbadense L. (CS-B), G. tomentosum Nuttal ex Seeman (CS-T), and G. mustelinum Meers ex Watt (CS-M), in the genetic background of G. hirsutum L. Texas Marker-1 (TM-1) were screened for resistance to a field-recommended rate (1.12 kg ae ha-1) of 2,4-D in the greenhouse. Seven CS lines, CS-T04-15, CS-B12, CS-B15sh, CS-T04, CS-B22sh, CS-T07, and CS-B04-15 with the lowest injury were evaluated for tolerance at four and seven weeks after seedling emergence under field conditions. Progeny tests conducted in the greenhouse validated 2,4-D tolerance of CS-B15sh, showing 41% lower injury than TM-1. Novel variants of CS-T04-15 and CS-T07 were identified with complete tolerance to the herbicide but are segregating. Uptake and translocation of 14C-labeled 2,4-D indicated that reduced translocation of 2,4-D may be the 2,4-D tolerance mechanism in CS-T04-15 and CS-T07, while gene(s) associated with metabolism and reduced auxin transport appeared associated with the 2,4-D tolerance in CS-B15sh. Transcriptome analysis revealed differential expression of genes in 2,4-D-treated CS-B15sh and TM-1 with several components of the 2,4-D/auxin response pathway, including ubiquitin E3 ligase, PB1|AUX/IAA, ARF transcription factors, and F box proteins of the SCFTIR1/AFB complex being up-regulated. Functional annotation of differentially expressed genes revealed down-regulation of auxin transport, suggesting a potential linkage with tolerance mechanism involving altered movement of 2,4-D in CS-B15sh. The selected highly tolerant cotton CS lines will need to be confirmed further using molecular assays.
|
2 |
Marker Assisted Selection for the development of intervarietal substitution lines in rapeseed <i>(Brassica napus L.)</i> and the estimation of QTL effects for glucosinolate content / Markergestützte Selektion für die Entwicklung von intervarietalen Substitutionslinien bei Raps <i>(Brassica napus L.)</i> und die Schätzung von QTL-Effekten für Glucosinolatgehalt. / Seleção assistida por marcadores para o desenvolvimento de linhas de substituição invervarietais em colza <i>(Brassica napus L.)</i> e estimativa do efeito dos QTL para teor de glucosinolatosMarschalek, Rubens 17 July 2003 (has links)
No description available.
|
3 |
Development of intervarietal substitution lines in <i>Brassica napus</i> L. using marker assisted selection and mapping of QTL for agronomically important traits / Entwicklung von intervarietalen Substitutionslinien in <i>Brassica napus</i> L. mit Markergestützte Selektion und Kartierung von QTL für wichtige agronomische MerkmaleKebede, Berisso 19 July 2007 (has links)
No description available.
|
Page generated in 0.1197 seconds