• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 5
  • 4
  • 2
  • 2
  • Tagged with
  • 71
  • 71
  • 22
  • 18
  • 15
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Activity-based Functional Annotation of Unknown Proteins: HAD-like hydrolases from E. coli and S. cerevisiae

Kuznetsova, Ekaterina 18 February 2010 (has links)
In all sequenced genomes, a large fraction of predicted genes encodes proteins of unknown biochemical function and up to 15% of the genes with ‘‘known’’ function are mis-annotated. Several global approaches are being employed to predict function, including sequence similarity searches, analysis of gene expression, protein interaction, and protein structure. Enzymes comprise a group of target proteins that require experimental characterization for accurate functional annotations. Here I applied enzyme genomics to identify new enzymes by screening individually purified proteins for enzymatic activity under relaxed reaction conditions, which allowed me to identify the subclass or sub-subclasses of enzymes to which the unknown protein belongs. Further biochemical characterization of proteins was facilitated by the application of secondary screens with natural substrates (substrate profiling). Application of general enzymatic screens and substrate profiling greatly sped up the identification of biochemical function of unknown proteins and the experimental verification of functional predictions produced by other functional genomics approaches. As a test case, I used this approach to characterize the members of the haloacid dehalogenase (HAD)-like hydrolase superfamily, which consists mainly of uncharacterized enzymes, with a few members shown to possess phosphatase, beta-phosphoglucomutase, phosphonatase, and dehalogenase activities. Low sequence similarity between the members of the HAD superfamily precludes the computational prediction of their substrates and functions. Using a representative set of 80 phosphorylated substrates I characterized the phosphatase activities of 21 soluble HADs from Escherichia coli and seven soluble HADs from Saccharomyces cerevisiae. E. coli HADs show broad and overlapping substrate specificity against a wide range of phosphorylated metabolites. The yeast enzymes were more specific, and one protein also showed protein phosphatase activity. Comparison of HAD substrate profiles from two model organisms showed several “functional niches” that are occupied by HADs, which include hydrolysis of nucleotides, phosphoglycolate, phosphoserine, and pyridoxal phosphate. I proposed the cellular function for a number of HADs from both organisms based on substrate specificities. The physiological relevance of the phosphatase activity with the preferred substrate was validated in vivo for one of the HADs, E. coli YniC.
22

Substrate specificities and functional properties of human short-chain dehydrogenases/reductases /

Shafqat, Naeem, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 5 uppsatser.
23

Mechanistic insights into the biosynthesis of polyketide antibiotics /

Sultana, Azmiri, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2006. / Härtill 5 uppsatser.
24

Characterization of the diverse substrate specificities and biological roles of polyamine biosynthetic enzymes in microorganisms

Lee, Jeongmi January 2008 (has links)
Dissertation (Ph.D.) -- University of Texas Southwestern Medical Center at Dallas, 2008. / Vita. Bibliography: p. 120-129.
25

Structural determinants of CYP2C9's genetic variability, substrate specificity and dioxygen cleavage /

Tai, Guoying. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 122-136).
26

Chemoenzymatic Synthesis of Polyketide Natural Products

Hari, Taylor P. A. January 2018 (has links)
Polyketide secondary metabolites constitute a structurally-diverse and clinically-important family of natural products. The wide range of biological activities represented by these substrates have contributed to therapeutic agents with annual sales exceeding $20B USD. Large multi-domain proteins called polyketide synthases (PKSs) use simple building blocks to generate highly-oxygenated and stereochemically-rich frameworks with astonishing selectivity. These substrates often feature rigidifying biases imposed by macrocyclic lactones and substituted heterocycles, which can impact their bioactive conformation. The work of this dissertation combines synthetic chemistry and biochemistry to investigate chemoenzymatic production of macrocyclic polyketide natural products. Research focused on validating a transannular oxa-conjugate addition strategy to assembly 2,6-cis-tetrahydropyran (THP) ring systems, as demonstrated by synthesis of the macrocyclic core to neopeltolide. Ultimately, we wish to apply this chemistry to de novo PKS pathways for rapid, reliable, and sustainable production of THP-bearing products like neopeltolide, and toward building SAR libraries. Additionally, a second study probed the specificity of the macrolactonizing thioesterase (TE) domain from the 6-deoxyerythronolide B (DEBS) biosynthetic pathway. This pathway is the paradigm for type-I PKS systems, and is responsible for producing the macrolide core of erythromycin. Our on-going research evaluates the limits of promiscuity within this specific catalytic domain, to characterize the structural elements required to accurately predict macrolactonization. The long-term goal of this study is to assess the potential applicability of DEBS TE as a generalized cyclization biocatalyst for combinatorial biochemistry and chemoenzymatic research.
27

Structural and enzymological studies of the thiolase enzymes

Meriläinen, G. (Gitte) 25 August 2009 (has links)
Abstract In the cells, the last step of the beta-oxidation cycle, aiming at the degradation of fatty acids, is catalyzed by the enzyme named thiolase. It shortens the acyl chain of the acyl-CoA by two carbons. The reaction is reversible, it can proceed for both directions. Thiolases are divided into two categories, synthetic and degradative ones. These two classes of thiolases differ not only by their biological function, but also by their substrate specificity. Degradative thiolases accept substrates with various lengths but synthetic thiolases only accept short chain-acyl-CoAs as a substrate. In humans, at least six isozymes of thiolases are found. The mitochondrial biosynthetic thiolase, T2, differs from other thiolases by getting activated by potassium. In addition, it accepts branched acyl-CoA, namely 2-methyl-acetoacetyl-CoA, as a substrate. This molecule is an important reaction intermediate in the degradation of the amino acid isoleucine. Many human patients have been diagnosed to have a mutation in the gene of T2, and they are treated with a special diet. The results of this theses show that potassium ion rigidifies the groups of the T2 protein involved in the substrate binding. The presence of potassium increases the reaction rate and it also raises the affinity towards some of the substrates. The enzyme mechanistic studies with bacterial thiolase revealed that the oxyanion hole 1, formed by a water molecule and histidine side chain, is important for the synthetic reaction, not so much for the degradative direction. Binding studies showed that both the terminal sulfur of the substrate and the sulfur of the catalytic cysteine are important for the right positioning of the substrate. The electrostatics of the active site also have a significant role in the catalysis. These studies give a good basis for future studies aiming at drug development against this enzyme in pathogenic species.
28

In silico and in vitro determination of substrate specificity for Breast Cancer Resistance Protein (BCRP) transporter at the blood-brain barrier

Wang, Fen January 2021 (has links)
Background The Breast Cancer Resistance Protein (BCRP) drug transporter is important for drug disposition and plays a critical role in regulating drug entry into the brain. Its substrate spectrum overlaps with substrates of Multi Drug Resistance Protein 1 (MDR1, P-gp), which influences and complicates the interpretation of data on drug distribution into tissues (e.g. brain). Distinguishing BCRP mediated transport from the transport by the MDR1 is often problematic. However, with new in vitro tools, this is now possible. In this project, two drug compounds, i.e. Dantrolene and Ritonavir, were investigated using these new in vitro models. The results from the experimental in vitro assay were matched with molecular dynamics (MD) simulations. Using coarse-grained (CG) simulations, a model of the BCRP transporter in a lipid bilayer was built, this model is based on the human BCRP structure revealed by Taylor et al (2017). Simulations were run for Dantrolene (a known substrate of BCRP) independently three times, and another with Ritonavir (a non-substrate) three times. Aim To determine substrate specificity for the BCRP transporter for two compounds, and to construct a CG model of BCRP transporter to see whether in silico methods can be used as an alternative for assessing substrate specificity.  Methods Madin-Darby canine kidney (MDCK) II cell line with no endogenous canine MDR1 (cMDR1) expression (MDCKcMDR1-KO), overexpressing human MDR1 (hMDR1) (MDCK-hMDR1cMDR1-KO) and stable expression of human BCRP (hBCRP) (MDCK-hBCRPcMDR1-KO) cells were cultured and used in Transwell experiments. Samples were analyzed using LC-MS/MS to determine the substrate concentrations. Apparent permeability and efflux ratio was calculated and evaluated.  MD simulations used the Martini 3 CG force field, and were run with Gromacs (version 2020.4). Tools including MODELLER, INSANE and others were used to construct the initial model (Webster, 2000; Wassenaar et al., 2015), for parameterization of substrate and non-substrate molecules. And visual inspection was done with the visual molecular dynamics (VMD) program and PyMOL. Results In vitro transport experiment confirmed that Dantrolene is a BCRP specific substrate, and Ritonavir is MDR1 specific substrate. Following simulations of these two compounds, Dantrolene is observed to stay in the transmembrane domains (TMD) for a certain period (on average several hundreds of nanoseconds), while Ritonavir is not found to bind in the TMD, which provides a proof of concept for future studies.
29

Advances in Flavonoid Glycosyltransferase Research: Integrating Recent Findings With Long-Term Citrus Studies

McIntosh, Cecilia A., Owens, Daniel K. 01 December 2016 (has links)
Flavonoid glycosides are required for a number of crucial roles in planta and have the potential for development in a variety of agricultural, medicinal, and biotechnological applications. A number of recent advancements have been made in characterizing glycosyltransferases, the enzymes that are responsible for the synthesis of these important molecules. In this review, glycosyltransferases are considered with regard to biochemical properties, expression patterns, levels of enzyme activity during development, and structure/function relationships. This is presented with historical context to highlight critical findings, particularly with regard to the innovative work that has come from research on citrus species. The plant glycosyltransferase crystal structures that have been solved over the past decade, either alone or in complex with sugar donor and/or acceptor molecules, are discussed. The application of results from these structures to inform current structure/function work as well as implications and goals for future crystallography and tertiary modeling studies are considered. A thorough understanding of the properties of glycosyltransferases will be a critical step in any future biotechnological application of these enzymes in areas such as crop improvement and custom design of enzymes to produce desired compounds for nutritional and/or medicinal usage.
30

PP2A/B55α Substrate Recruitment As Defined By The Retinoblastoma-Related Protein p107

Fowle, Holly, 0000-0003-1465-8033 January 2021 (has links)
Protein phosphorylation is a reversible post-translation modification that is essential in cell signaling. It is estimated that a third of all cellular proteins are phosphorylated (reviewed in Ficarro et al., 2002), with more than 98% of those phosphorylation events occurring on serine and threonine residues (Olsen et al., 2006). Kinases are the necessary enzymes for phosphorylation and protein phosphatases dynamically reverse this action. While the mechanisms of substrate recognition for kinases have been well-characterized to date, the same is not true for phosphatases that play an equally important role in opposing kinase function and determining global phosphorylation levels in cells. This dichotomy has also translated into the clinic, where there has been a persistently narrow research focus on the development of small-molecule kinase inhibitors for use as chemotherapeutic agents, without an equal effort being placed into the generation of the analogous phosphatase activators (reviewed in Westermarck, 2018). Members of the phosphoprotein phosphatase (PPP) family of serine/threonine phosphatases are responsible for the majority of dephosphorylation in eukaryotic cells, with protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) accounting for more than 90% of the total phosphatase activity (Moorhead et al., 2007; Virshup and Shenolikar, 2009). Structurally, PP2A is a trimeric holoenzyme consisting of a scaffold (A) subunit, a regulatory (B) subunit, and a catalytic (C) subunit. B55α is a ubiquitous regulatory subunit that is reported to target many substrates with critical functions in processes including cell division. A long-standing question that has persisted in the field of cellular signaling is as to how the most abundant serine/threonine PP2A holoenzyme, PP2A/B55α, specifically recognizes substrates and presents them to the enzyme active site for subsequent dephosphorylation. Such critical data have only recently become well understood for the B56 family of ‘B’ regulatory subunits, where an LxxIxE short linear motif (or SLiM) has been identified in a subset of protein targets and shown via crystal structure analysis to dock into a 100% conserved binding pocket on the B56 surface (Hertz et al., 2016; Wang et al., 2016a; Wang et al., 2016b; Wu et al., 2017). Here, we show how B55α recruits p107, a pRB-related tumor suppressor and B55α substrate. Using molecular and cellular approaches, we identified a conserved region 1 (R1, residues 615-626) encompassing the strongest p107 binding site. This enabled us to identify an “HxRVxxV619-625” SLiM in p107 as necessary for B55α binding and dephosphorylation of the proximal pSer-615 in vitro and in cells. Numerous additional PP2A/B55α substrates, including TAU, contain a related SLiM C-terminal from a proximal phosphosite, allowing us to propose a consensus SLiM sequence, “p[ST]-P-x(5-10)-[RK]-V-x-x-[VI]-R”. In support of this, mutation of conserved SLiM residues in TAU dramatically inhibits dephosphorylation by PP2A/B55α, validating its generality. Moreover, a data-guided computational model details the interaction of residues from the conserved p107 SLiM, the B55α groove, and phosphosite presentation to the PP2A/C active site. Altogether, these data provide key insights into PP2A/B55α mechanisms of substrate recruitment and active site engagement, and also facilitate identification and validation of new substrates, a key step towards understanding the role of PP2A/B55α in many key cellular processes. As a parallel continuation of our efforts to identify novel B55α substrates/regulators, we generated mutant B55α constructs that occlude PP2A/A-C dimer engagement but retain substrate binding to the β-propeller structure (allowing us to interrogate direct interactors). Our preliminary AP-MS data led to the identification of several proteins that bound better to our “monomeric B55α” mutant compared to wild-type B55α in the context of the PP2A/B55α heterotrimer, including the centrosomal proteins HAUS6 and CEP170 (two substrates previously validated in a phosphoproteomic screen by our lab), suggesting that these mutants trap substrates as they cannot be dephosphorylated by PP2A/C. These analyses also identified an enrichment of T-complex protein 1 subunits in the “monomeric B55α” mutant elutions, further supporting the notion that these mutants may function as dominant negatives. Several additional proteins of interest were identified in the two independent rounds of mass spectrometry, including subunits of the DNA-directed RNA polymerases I, II, and IV, as well as the double-strand break repair protein MRE11, which can be followed up as potential novel B55α substrates. These studies can contribute to significant advances in our understanding of the network of proteins that B55α interacts with, and thus the signaling pathways that can be modulated by PP2A/B55α complexes in cells. Moreover, these advances can also provide translational benefits as has been demonstrated through the study of PP2A activators termed SMAPs, which demonstrate selective stabilization of PP2A/B56α complexes in cells that result in selective dephosphorylation of substrates including the oncogenic target c-MYC. / Biomedical Sciences

Page generated in 0.1172 seconds