• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 10
  • 7
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 20
  • 15
  • 13
  • 12
  • 12
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification of differentially expressed genes in the rat brain stem during the progression toward death by suppression subtractive hybridization

Chan, Chin-Yi 07 September 2002 (has links)
Recent studies have discovered that LPS-treated Sprague-Dawley rats induced a reduction (phase I), followed by an augmentation (phase II), and decrease again (phase III) in the power density of the vasomotor component (0-0.8 Hz) in systemic arterial pressure (SAP). It was reported that the vasomotor components were related to the brain stem, even closely related to the rostral ventrolateral medulla (RVLM). But the molecular mechanism involved in the death progression of rat brain stem is mostly unknown. We used suppression subtractive hybridization (SSH) and library construction to find differentially expressed genes between phase I and phase II of LPS-treated RVLM. At present, we have found some genes that are differentially expressed between phase I and phase II of LPS-treated RVLM. Some genes are up-regulation expression and others are down-regulation expression. Thus, these genes may be involved in the molecular mechanism of the death progression in the rat brain stem.
2

Characterisation of genes derived from murine malignant mesothelioma by suppression subtractive hybridization

Thean, Ai Lee January 2002 (has links)
Malignant mesothelioma (MM) is an aggressive tumour, which is highly associated with previous asbestos exposure and is resistant to most conventional anticancer therapies. Previous studies have used a mouse model of to 01 p effective approaches to induction of anti-tumour immunity using modification of tumour cells by the introduction of genetic constructs expressing genes such as that for B7-1 so that tumour growth can be inhibited in vivo. Transfectant clones, AC29 B7-7 and AC29 B7-6, which showed equal levels of expression of B7-1 but were markedly different in tumorigenicity were assessed using suppression subtractive hybridization (SSH) in order to isolate transcripts which may have been differentially expressed in the two clones. SSH allowed isolation of a number of cDNAs which were apparently differentially expressed in the cell lines. These required characterisation in order to determine their possible relevance to tumorigenicity. Two cDNAs designated as 7-7-76 and 7-7-43 had been isolated previously and the aim of this project was to characterise these cDNAs by sequencing, searching for their homology relationships and investigating gene expression profiles. Preliminary searches revealed that clone 7-7-43 had homology to cyclin-dependent kinase regulatory subunit 1 which plays a role in the cell cycle. On the other hand, clone 77-76 showed only homology to an EST of hypertension related protein and therefore, further investigation was required to obtain the identity of clone 7-7-76. The first part of this project was to in investigate and evaluate gene expression on clone 7-7-43, using both relative RT-PCR and Northern blotting.' In the second part of this project, a more intense study of clone 7-7-76 was conducted. Clone 7-7-76 was investigated for its homology relationships and its gene expression profile. / Results obtained from relative RT-PCR suggested no difference in the expression of the either eDNA clone (7-7-43 and 7-7-76) between the MM clones AC29 B7-6 and AC29 B7-7, the cells used to derive these clones by SSH. Therefore, it was concluded that neither clone 7-7-43 nor 7-7-76 was differentially expressed in MM cells of differing immuno enicit RACE was employed in order to derive a longer sequence of clone 7-7-76 and the newly derived sequence of 7-7-76 was again used to search for homologies using a wider range of sequences for human and other species. These investigations on clone 7-7-76 showed it to correspond to the sequence of human mitofusin 2 which is involved in determining mitochondrial morphology The results determined in this project suggest that clones 7-7-43 and 7-7-76 are not differentially expressed in the range of MM cell lines tested. The data have however highlighted the potential of the SSH technique to easily derive cDNA clones worthy of investigation, but underline the possibility of false positive clones being isolated. The need for an efficient, accurate screening procedure such as real-time PCR is acknowledged.
3

Expression of anxiety-related genes, including the cytoplasmic polyadenylation element binding protein (CPEB), in the rat limbic system

Van Cleemput, Jamie Michelle 03 May 2006
Anxiety disorders are one of the most prevalent mental disorders in the world. While normal anxiety serves as an important protective mechanism, pathological anxiety characteristic of an anxiety disorder is both maladaptive and disruptive. The majority of studies have focused on the neurotransmitter systems associated with the actions of known anxiety drugs. This focus may likely limit the exploration of mechanisms underlying anxiety disorders. This project aims to examine changes in gene expression that may underlie higher or lower levels of inherent anxiety. Using a well-established behavior test for anxiety, the elevated plus maze, we identified male Wistar rats exhibiting inherently high- or low-anxiety levels. Brain regions known to mediate anxiety, the amygdala, hippocampus and nucleus accumbens, were dissected and total mRNA isolated. The mRNA was converted to cDNA via reverse transcription-polymerase chain reaction (RT-PCR). Then, the cDNA was used in suppression subtractive hybridization, a technique used to compare two complete populations of cDNAs and identify cDNAs that are upregulated in one population in relation to the other. In this project suppression subtractive hybridization was used to compare high- and low-anxiety cDNA populations. The upregulated cDNAs were amplified in a PCR reaction that enables rare transcripts to be identified. The PCR products from the suppression subtractive hybridization were cloned and used to create two cDNA libraries for high- and low-anxiety related genes. These clones were sequenced to show over 1000 genes upregulated in high- and low-anxiety. The gene list was then subjected to bioinformatic analysis to identify one candidate to be studied in further detail. <p>The prion protein was identified as a potential candidate. Examination of the literature sparked an interest in studying other prion-like proteins, more specifically the cytoplasmic polyadenylation element binding protein (CPEB). The CPEB protein is a potent regulator of mRNA translation in both mature oocytes and the adult brain. While unphosphorylated the CPEB protein keeps specific mRNAs dormant in the cytoplasm. In its phosphorylated form CPEB catalyzes polyadenylation of the mRNA, leading to protein synthesis. p*PCR was used to show the presence of CPEB mRNA transcripts in the rat hippocampus. CPEB protein expression was examined in the brain samples isolated from control, high- and low-anxiety rats. It was found that CPEB was significantly upregulated in high- and low-anxiety rats compared to control. The protein expression of an upstream kinase, Aurora A kinase, and a downstream target, Calcium/Calmodulin Dependent Kinase II (CaMKII), was also investigated. The results from Aurora A kinase were inconclusive. CaMKII, on the other hand, was significantly upregulated in high-anxiety over both control and low-anxiety. These results suggest that CPEB may catalyze increased translation of mRNAs in high-anxiety while acting as a repressor of those same mRNAs in low-anxiety. <p>Recent studies have suggested that CPEB protein plays an important role in synaptic plasticity. The regulation of synaptic plasticity, and its impact on learning and memory, is believed to be a key mechanism behind the maintenance of anxiety disorders. Therefore the results of this study suggest a new molecular mechanism in the development of anxiety disorders.
4

Expression of anxiety-related genes, including the cytoplasmic polyadenylation element binding protein (CPEB), in the rat limbic system

Van Cleemput, Jamie Michelle 03 May 2006 (has links)
Anxiety disorders are one of the most prevalent mental disorders in the world. While normal anxiety serves as an important protective mechanism, pathological anxiety characteristic of an anxiety disorder is both maladaptive and disruptive. The majority of studies have focused on the neurotransmitter systems associated with the actions of known anxiety drugs. This focus may likely limit the exploration of mechanisms underlying anxiety disorders. This project aims to examine changes in gene expression that may underlie higher or lower levels of inherent anxiety. Using a well-established behavior test for anxiety, the elevated plus maze, we identified male Wistar rats exhibiting inherently high- or low-anxiety levels. Brain regions known to mediate anxiety, the amygdala, hippocampus and nucleus accumbens, were dissected and total mRNA isolated. The mRNA was converted to cDNA via reverse transcription-polymerase chain reaction (RT-PCR). Then, the cDNA was used in suppression subtractive hybridization, a technique used to compare two complete populations of cDNAs and identify cDNAs that are upregulated in one population in relation to the other. In this project suppression subtractive hybridization was used to compare high- and low-anxiety cDNA populations. The upregulated cDNAs were amplified in a PCR reaction that enables rare transcripts to be identified. The PCR products from the suppression subtractive hybridization were cloned and used to create two cDNA libraries for high- and low-anxiety related genes. These clones were sequenced to show over 1000 genes upregulated in high- and low-anxiety. The gene list was then subjected to bioinformatic analysis to identify one candidate to be studied in further detail. <p>The prion protein was identified as a potential candidate. Examination of the literature sparked an interest in studying other prion-like proteins, more specifically the cytoplasmic polyadenylation element binding protein (CPEB). The CPEB protein is a potent regulator of mRNA translation in both mature oocytes and the adult brain. While unphosphorylated the CPEB protein keeps specific mRNAs dormant in the cytoplasm. In its phosphorylated form CPEB catalyzes polyadenylation of the mRNA, leading to protein synthesis. p*PCR was used to show the presence of CPEB mRNA transcripts in the rat hippocampus. CPEB protein expression was examined in the brain samples isolated from control, high- and low-anxiety rats. It was found that CPEB was significantly upregulated in high- and low-anxiety rats compared to control. The protein expression of an upstream kinase, Aurora A kinase, and a downstream target, Calcium/Calmodulin Dependent Kinase II (CaMKII), was also investigated. The results from Aurora A kinase were inconclusive. CaMKII, on the other hand, was significantly upregulated in high-anxiety over both control and low-anxiety. These results suggest that CPEB may catalyze increased translation of mRNAs in high-anxiety while acting as a repressor of those same mRNAs in low-anxiety. <p>Recent studies have suggested that CPEB protein plays an important role in synaptic plasticity. The regulation of synaptic plasticity, and its impact on learning and memory, is believed to be a key mechanism behind the maintenance of anxiety disorders. Therefore the results of this study suggest a new molecular mechanism in the development of anxiety disorders.
5

Molecular And Biochemical Analysis Of Water Stress Induced Responses In Grape

Katam, Ramesh 13 December 2008 (has links)
Water stress affects vine productivity, disease tolerance, and enological characteristics of grape. Florida Hybrid Bunch grape are developed through hybridization of local grape spp with Vitis vinifera. These cultivars are mostly grown in southeast region of United States. Water deficit conditions resulted due to failure of rains in the region has developed concern among Florida grape growers to increase water use efficiency of grape. The goal of this research is to identify genes and proteins differentially expressed in response to water stress and to correlate these changes with enological characteristics. Investigating transcripts and proteins will allow us to correlate them and confirm the involvement of specific genes responding to stress. Florida hybrid bunch ‘Suwannee’ grape plants were maintained under green house conditions. Water stress was induced by withholding irrigation. The leaf samples were collected from both irrigated and stressed plants at 5, 10, 15 and 20 day interval. We generated over 200 Subtractive Hybridization PCR products from control and water stressed leaf tissues. Cloning, sequencing and transcript analysis revealed that, 54 genes related to drought and defense regulated pathways out of 125 characterized transcripts. Proteins were extracted from leaf tissue with trichloroacetic acid /acetone and separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). The proteins were sequenced in LC/Mass Spectrophotometer. The most important differentially expressed genes include sucrose synthase, actin, isoprene synthase, ABF3, SNF1 related protein kinase, WRKY type transcription factors, AP2, ASR2, glyoxalase I and, cytochrome b which play significant role in cell permeability, transportation, photosynthesis and, maintenance in osmotic stress. We have found that ribulose bisphosphate carboxylase and phosphoribulokinase, which play major role in photosynthesis, were suppressed in response to water stress in Florida hybrid bunch. The results suggested that water stress affects expression of cDNAs associated with defense and drought regulated functions. Such profiling studies will be used to explicate specific pathways disconcerted by water deficit treatments, and in the identification of varietal differences.
6

Caracterização molecular de genes preferencialmente expressos na fase leveduriforme patogênica de ´Paracoccidioides brasiliensis´ através das técnicas de ´Macroarray´ e de SSH (Suppression Substractive Hybridization) / Molecular characterization of preferentially expressed genes in the yeast pathogenic phase of Paracoccidioides brasiliensis through the techniques of Macroarray and SSH (Suppression Subtraction Hybridization)

Marques, Everaldo dos Reis 22 December 2005 (has links)
Paracoccidioides brasiliensis, um fungo termodimórfico, é o agente causador da paracoccidioidomicose (PCM), a micose sistêmica prevalente da América Latina. A patogenicidade aparenta estar intimamente relacionada com a transição dimórfica da forma de micélio para a de levedura, que é induzida pela mudança da temperatura do ambiente pela temperatura do hospedeiro mamífero. Há poucas informações disponíveis sobre genes de P. brasiliensis que são necessários durante a fase patogênica. Nós, então, realizamos as técnicas de SSH (“Suppression Subtraction Hybridization") e de “Macroarray" com o objetivo de identificar genes que sejam preferencialmente expressos na fase leveduriforme do isolado Pb18. Genes identificados em ambos os procedimentos estão mais expressos na fase leveduriforme e estão envolvidos em metabolismo básico, transdução de sinal, crescimento e morfogênese e metabolismo do enxofre. Para testar se as mudanças observadas na expressão gênica refletem as diferenças entre as condições de crescimento usadas para obter as duas formas morfológicas preferivelmente às diferenças intrínsecas dos tipos celulares, nós realizamos experimentos com RT-PCR em tempo real utilizando preparações de RNA derivadas de ambas as fases, micélio e levedura, crescidas a 26°C e 37°C nos meios de cultura completos (YPD e Sabouraud) e meio mínimo. Vinte genes, incluindo AGS1 ( -1,3-glucan synthase) e TSA1 (thiol-specific antioxidant), foram mostrados como mais expressos na levedura patogênica em relação ao micélio. Embora a expressão de RNA mensageiro foi bastante diferente em relação aos meios completos e meio mínimo, mostramos uma tendência geral para que esses genes serem mais expressos nas células leveduriformes patogênicas de P.x brasiliensis. Além disso, mostramos a complementação dos genes METR e SCONC de P. brasiliensis e uma cepa com estes genes deletados de Aspergillus nidulans, sugerindo uma possível homologia entre eles. Mostramos também a análise de genes da via do metabolismo do enxofre foram mais expressos na levedura patogênica de P. brasiliensis em relação ao micélio saprofítico. / Paracoccidioides brasiliensis, a thermodimorphic fungus, is the causative agent of paracoccidioidomycosis (PCM), a prevalent systemic mycosis in Latin America. Pathogenicity appears to be intimately related to the dimorphic transition from the hyphal to the yeast form, which is induced by a shift from environmental temperature to the temperature of the mammalian host. Little information is available on the P. brasiliensis genes necessary during the pathogenic phase. We have therefore undertaken Suppression Subtraction Hybridization (SSH) and macroarray analyses with the aim of identifying genes that are preferentially expressed in the yeast phase. Genes identified by both procedures as being more highly expressed in the yeast phase are involved in basic metabolism, signal transduction, growth and morphogenesis, and sulfur metabolism. In order to test whether the observed changes in gene expression reflect the differences between the growth conditions used to obtain the two morphological forms rather than differences intrinsic to the cell types, we performed real-time RT-PCR experiments using RNA derived from both yeast cells and mycelia that had been cultured at 37 and 26°C in either complete medium (YPD or Sabouraud) or minimal medium. Twenty genes, including AGS1 ( 1,3-glucan synthase) and TSA1 (thiol-specific antioxidant), were shown to be more highly expressed in the yeast cells than in the hyphae. Although their levels of expression could be different in rich and minimal media, there was a general tendency for these genes to be more highly expressed in the yeast cells. Moreover, complementation of P. brasiliensis METR and SCONC genes in strains of Aspergillus nidulans with these genes deleted suggested a possible homology between them. We show the analyses of genes involved in the xii sulphur metabolism pathway and these genes were more expressed in the pathogenic yeast than saprophytic mycelia of P. brasiliensis.
7

Caracterização molecular de genes preferencialmente expressos na fase leveduriforme patogênica de ´Paracoccidioides brasiliensis´ através das técnicas de ´Macroarray´ e de SSH (Suppression Substractive Hybridization) / Molecular characterization of preferentially expressed genes in the yeast pathogenic phase of Paracoccidioides brasiliensis through the techniques of Macroarray and SSH (Suppression Subtraction Hybridization)

Everaldo dos Reis Marques 22 December 2005 (has links)
Paracoccidioides brasiliensis, um fungo termodimórfico, é o agente causador da paracoccidioidomicose (PCM), a micose sistêmica prevalente da América Latina. A patogenicidade aparenta estar intimamente relacionada com a transição dimórfica da forma de micélio para a de levedura, que é induzida pela mudança da temperatura do ambiente pela temperatura do hospedeiro mamífero. Há poucas informações disponíveis sobre genes de P. brasiliensis que são necessários durante a fase patogênica. Nós, então, realizamos as técnicas de SSH (“Suppression Subtraction Hybridization”) e de “Macroarray” com o objetivo de identificar genes que sejam preferencialmente expressos na fase leveduriforme do isolado Pb18. Genes identificados em ambos os procedimentos estão mais expressos na fase leveduriforme e estão envolvidos em metabolismo básico, transdução de sinal, crescimento e morfogênese e metabolismo do enxofre. Para testar se as mudanças observadas na expressão gênica refletem as diferenças entre as condições de crescimento usadas para obter as duas formas morfológicas preferivelmente às diferenças intrínsecas dos tipos celulares, nós realizamos experimentos com RT-PCR em tempo real utilizando preparações de RNA derivadas de ambas as fases, micélio e levedura, crescidas a 26°C e 37°C nos meios de cultura completos (YPD e Sabouraud) e meio mínimo. Vinte genes, incluindo AGS1 ( -1,3-glucan synthase) e TSA1 (thiol-specific antioxidant), foram mostrados como mais expressos na levedura patogênica em relação ao micélio. Embora a expressão de RNA mensageiro foi bastante diferente em relação aos meios completos e meio mínimo, mostramos uma tendência geral para que esses genes serem mais expressos nas células leveduriformes patogênicas de P.x brasiliensis. Além disso, mostramos a complementação dos genes METR e SCONC de P. brasiliensis e uma cepa com estes genes deletados de Aspergillus nidulans, sugerindo uma possível homologia entre eles. Mostramos também a análise de genes da via do metabolismo do enxofre foram mais expressos na levedura patogênica de P. brasiliensis em relação ao micélio saprofítico. / Paracoccidioides brasiliensis, a thermodimorphic fungus, is the causative agent of paracoccidioidomycosis (PCM), a prevalent systemic mycosis in Latin America. Pathogenicity appears to be intimately related to the dimorphic transition from the hyphal to the yeast form, which is induced by a shift from environmental temperature to the temperature of the mammalian host. Little information is available on the P. brasiliensis genes necessary during the pathogenic phase. We have therefore undertaken Suppression Subtraction Hybridization (SSH) and macroarray analyses with the aim of identifying genes that are preferentially expressed in the yeast phase. Genes identified by both procedures as being more highly expressed in the yeast phase are involved in basic metabolism, signal transduction, growth and morphogenesis, and sulfur metabolism. In order to test whether the observed changes in gene expression reflect the differences between the growth conditions used to obtain the two morphological forms rather than differences intrinsic to the cell types, we performed real-time RT-PCR experiments using RNA derived from both yeast cells and mycelia that had been cultured at 37 and 26°C in either complete medium (YPD or Sabouraud) or minimal medium. Twenty genes, including AGS1 ( 1,3-glucan synthase) and TSA1 (thiol-specific antioxidant), were shown to be more highly expressed in the yeast cells than in the hyphae. Although their levels of expression could be different in rich and minimal media, there was a general tendency for these genes to be more highly expressed in the yeast cells. Moreover, complementation of P. brasiliensis METR and SCONC genes in strains of Aspergillus nidulans with these genes deleted suggested a possible homology between them. We show the analyses of genes involved in the xii sulphur metabolism pathway and these genes were more expressed in the pathogenic yeast than saprophytic mycelia of P. brasiliensis.
8

Differential Expression of Genes During Diapause in the Flesh Fly, <em>Sarcophaga crassipalpis</em>.

Karki, Puja 19 August 2009 (has links)
The objective of this study was to identify genes that are differentially regulated during diapause when compared with nondiapausing pupae in Sarcophaga crassipalpis. The results of a Suppression Subtractive Hybridization procedure was used to indentify genes that are differentially regulated in both diapause and nondiapausing states while suppressing genes that are common to both states. Randomly picked colonies from both subtractive libraries were isolated and the inserts sequenced. The sequences were analyzed using the bioinformatics tools NCBI, BlastX, Clustal W, etc. Out of 384 clones, 59 genes were found to be upregulated during diapause and 37 genes were found to be upregulated during a nondiapause pupal stage, no genes were found to be expressed commonly in both the diapause and nondiapause constructed libraries.
9

Detection Of Differentially Expressed Genes Upon Compatible And Incompatible Inoculation Of Wheat With Yellow Rust Using Suppression Subtractive Hybridization (ssh)

Celik, Ilay 01 November 2007 (has links) (PDF)
Yellow rust disease is one of the most important problems in wheat production. It causes substantial yield losses throughout the world. There are resistant and susceptible wheat varieties to various yellow rust pathotypes. In this thesis genes that are induced in wheat, in virulence and avirulence conditions upon yellow rust inoculations were investigated. Consequently, it was aimed to identify genes that may be playing critical roles in the disease resistance mechanism. The strategy was to construct subtracted cDNA libraries from resistant and susceptible plants and analyse the sequences obtained from these libraries. The subtraction approach in this study differs from the common subtraction designs implicated in plant-pathogen interactions / instead of comparing a compatible or an incompatible interaction with a control, one of the subtractions in this study is done taking a compatible interaction as the tester and an incompatible one as the driver, and the second subtraction, vice versa. Therefore, it was intended to compare the transcriptomes from compatible and incompatible plant-pathogen interactions directly. Suppression Subtractive Hybridization method was used to construct subtracted cDNA libraries. Two subtractions were performed / SSH1 (D-R), taking a compatible interaction as the tester sample and an incompatible one as the driver sample, and SSH2 (R-D), taking an incompatible interaction as the tester sample and a compatible one as the driver. In the end, two subtracted cDNA libraries, SSH1 (D-R) library (1536 clones) and SSH2 (R-D) library (1152 clones) were obtained and the libraries were sequenced. Sequence results were subjected to BlastN and BlastX analysis. We looked for a group of genes that were frequently emphasized in plant disease related studies when we searched within the Blast N homology results of the two libraries. We found out that 19 such genes are present in our libraries. We discussed supposed induction of these genes in the interactions investigated in our study. The fact that these genes were found to be present in our libraries enhances the reliability of our results suggesting that the gene sequences we found indeed belong to genes differentially expressed in the respective comparisons investigated in our study. As such, it also implies that other sequences that were found similar to genes of known functions may represent candidate genes as subjects of further studies investigating wheat-yellow rust interactions.
10

Germline transformation and isolation of midgut related genes from the potato tuber moth, Phthoramiaea operculella, (Lepidoptera: Gelechiidae).

Mohammed, Ahmed Mohammed Ahmed 15 November 2004 (has links)
Potato production in tropical and subtropical countries suffers from damage caused by the potato tuber moth (PTM), Phthorimiaea operculella. Development of a germline transformation system and the identification of genes that are differentially expressed within the PTM midgut are the main goals of this research. We tested three components that are critical to genetic transformation systems for insects; promoter activity, marker gene expression, and transposable element function. We compared the transcriptional activities of five different promoters, hsp70, hsp82, actin5C, polyubiquitin and ie1, within PTM embryos. The ie1 promoter flanked with the enhancer element, hr5, showed a very high level of transcriptional activity compared with the other promoters. The expression of the enhanced green fluorescent protein (EGFP) was detected under UV-illumination within the embryonic soma demonstrating that it can be used as an effective marker gene for PTM. The transpositional activities of the Hermes, mariner and piggyBac transposable elements were tested in interplasmid transposition assays. The piggyBac element was shown mobile within the embryonic soma with a transposition frequency of 4.2 X 10-5 transposition/donor plasmid. The piggyBac mobility has been enhanced by incorporating a transactivator plasmid expressing the IE1 protein from the bacoluvirus Autographa californica nuclear polyhedrosis virus. Seven transformation experiments were performed. The experiments failed to produce a transgenic PTM. The insect midgut is a rich region of molecular targets involved in food processing that could be potentially used to design a new control strategy. The suppression subtractive hybridization (SSH) method was used to identify differentially expressed genes from the PTM midgut. From this subtracted library, 2984 clones were collected and screened. Of these clones, 637 clones are candidate differentially expressed genes within the PTM midgut. Sixty-nine cDNA clones were randomly selected for DNA sequencing. Tweleve clones were selected for further analysis using RT-PCR and Northern blot techniques. Eleven of the clones resulted in positive results for midgut expression. Five clones, showing homology with insect immune peptides, were used in the challenge experiment which revealed that these cDNAs are constitutively expressed in the midgut, as well as being up-regulated due to bacterial or viral challenge.

Page generated in 0.1365 seconds