Spelling suggestions: "subject:"succinct data structures"" "subject:"succincte data structures""
1 |
Stručná kódování stromů / Succinct encodings of treesJuraszek, Adam January 2016 (has links)
We focus on space-efficient, namely succinct, representations of static ordinal unlabeled trees. These structures have space complexity which is optimal up to a lower-order term, yet they support a reasonable set of operations in constant time. This topic has been studied in the last 27 years by numerous authors who came with several distinct solutions to this problem. It is not only of an academic interest, the succinct tree data structures has been used in several data-intensive applications, such as XML processing and representation of suffix trees. In this thesis, we describe the current state of knowledge in this area, compare the many different approaches, and propose several either new or alternative algorithms for operations in the representations alongside. Powered by TCPDF (www.tcpdf.org)
|
2 |
Succinct IndexesHe, Meng 30 January 2008 (has links)
This thesis defines and designs succinct indexes for several abstract data types (ADTs). The concept is to design auxiliary data structures that ideally occupy asymptotically less space than the information-theoretic lower bound on the space required to encode the given data, and support an extended set of operations using the basic operators defined in the ADT. As opposed to succinct (integrated data/index) encodings, the main advantage of succinct indexes is that we make assumptions only on the ADT through which the main data is accessed, rather than the way in which the data is encoded. This allows more freedom in the encoding of the main data. In this thesis, we present succinct indexes for various data types, namely strings, binary relations, multi-labeled trees and multi-labeled graphs, as well as succinct text indexes. For strings, binary relations and multi-labeled trees, when the operators in the ADTs are supported in constant time, our results are comparable to previous results, while allowing more flexibility in the encoding of the given data.
Using our techniques, we improve several previous results. We design succinct representations for strings and binary relations that are more compact than previous results, while supporting access/rank/select operations efficiently. Our high-order entropy compressed text index provides more efficient support for searches than previous results that occupy essentially the same amount of space. Our succinct representation for labeled trees supports more operations than previous results do. We also design the first succinct representations of labeled graphs.
To design succinct indexes, we also have some preliminary results on succinct data structure design. We present a theorem that characterizes a permutation as a suffix array, based on which we design succinct text indexes. We design a succinct representation of ordinal trees that supports all the navigational operations supported by various succinct tree representations. In addition, this representation also supports two other encodings schemes of ordinal trees as abstract data types. Finally, we design succinct representations of planar triangulations and planar graphs which support the rank/select of edges in counter clockwise order in addition to other operations supported in previous work, and a succinct representation of k-page graph which supports more efficient navigation than previous results for large values of k.
|
3 |
Succinct IndexesHe, Meng 30 January 2008 (has links)
This thesis defines and designs succinct indexes for several abstract data types (ADTs). The concept is to design auxiliary data structures that ideally occupy asymptotically less space than the information-theoretic lower bound on the space required to encode the given data, and support an extended set of operations using the basic operators defined in the ADT. As opposed to succinct (integrated data/index) encodings, the main advantage of succinct indexes is that we make assumptions only on the ADT through which the main data is accessed, rather than the way in which the data is encoded. This allows more freedom in the encoding of the main data. In this thesis, we present succinct indexes for various data types, namely strings, binary relations, multi-labeled trees and multi-labeled graphs, as well as succinct text indexes. For strings, binary relations and multi-labeled trees, when the operators in the ADTs are supported in constant time, our results are comparable to previous results, while allowing more flexibility in the encoding of the given data.
Using our techniques, we improve several previous results. We design succinct representations for strings and binary relations that are more compact than previous results, while supporting access/rank/select operations efficiently. Our high-order entropy compressed text index provides more efficient support for searches than previous results that occupy essentially the same amount of space. Our succinct representation for labeled trees supports more operations than previous results do. We also design the first succinct representations of labeled graphs.
To design succinct indexes, we also have some preliminary results on succinct data structure design. We present a theorem that characterizes a permutation as a suffix array, based on which we design succinct text indexes. We design a succinct representation of ordinal trees that supports all the navigational operations supported by various succinct tree representations. In addition, this representation also supports two other encodings schemes of ordinal trees as abstract data types. Finally, we design succinct representations of planar triangulations and planar graphs which support the rank/select of edges in counter clockwise order in addition to other operations supported in previous work, and a succinct representation of k-page graph which supports more efficient navigation than previous results for large values of k.
|
4 |
An Optimized Representation for Dynamic k-ary Cardinal TreesYasam, Venkata Sudheer Kumar Reddy January 2009 (has links)
Trees are one of the most fundamental structures in computer science. Standard pointer-based representations consume a significant amount of space while only supporting a small set of navigational operations. Succinct data structures have been developed to overcome these difficulties. A succinct data structure for an object from a given class of objects occupies space close to the information-theoretic lower-bound for representing an object from the class, while supporting the required operations on the object efficiently. In this thesis we consider representing trees succinctly. Various succinct representations have been designed for representing different classes of trees, namely, ordinal trees, cardinal trees and labelled trees. Barring a few, most of these representations are static in that they do not support inserting and deleting nodes. We consider succinct representations for cardinal trees that also support updates (insertions and deletions), i.e., dynamic cardinal trees. A cardinal tree of degree k, also referred to as a k-ary cardinal tree or simply a k-ary tree is a tree where each node has place for up to k children with labels from 1 to k. The information-theoretic lower bound for representing a k-ary cardinal tree on n nodes is roughly (2n+n log k) bits. Representations that take (2n+n log k+ o(n log k ) ) bits have been designed that support basic navigations operations like finding the parent, i-th child, child-labeled j, size of a subtree etc. in constant time. But these could not support updates efficiently. The only known succinct dynamic representation was given by Diego, who gave a structure that still uses (2n+n log k+o(n log k ) ) bits and supports basic navigational operations in O((log k+log log n) ) time, and updates in O((log k + log log n)(1+log k /log (log k + log log n))) amortized time. We improve the times for the operations without increasing the space complexity, for the case when k is reasonably small compared to n. In particular, when k=(O(√(log n ))) our representation supports all the navigational operations in constant time while supporting updates in O(√(log log n )) amortized time.
|
Page generated in 0.0685 seconds