Spelling suggestions: "subject:"sulfatereducing bioreactor"" "subject:"sulfatereducing miroreactor""
1 |
EVALUATION OF THE TAB-SIMCO ACID MINE DRAINAGE TREATMENT SYSTEM: WATER CHEMISTRY, PERFORMANCE AND TREATMENT PROCESSESSegid, Yosief Teklehaimanot 01 May 2010 (has links)
No
|
2 |
Sulfate Reducing Bioreactor Dependence on Organic Substrates for Long-Term Remediation of Acid Mine DrainageWalters, Evan Robert 01 May 2014 (has links)
Coal-generated acid mine drainage (AMD) is characterized by low-pH waters with excessive loads of dissolved species such as SO4, Fe, Al and Mn along with other elements of environmental concern (i.e. Cd, As, Cr, Ni, Pb, Se and Cu). To mitigate this problem, anaerobic sulfate reducing bioreactors (ASRB) have been implemented as a technology for passive treatment systems that utilize low-cost organic substrates to stimulate biologically enhanced contaminant sequestration. Previous work has identified the establishment of diverse microbial communities in which a hierarchal chain of substrate degradation processes is essential in developing sustainable environments to produce long-lived sulfate-reducing microbial (SRM) populations. In this study, to determine the optimal mixture of substrate types, alternating ratios of herbaceous (ie. leaves, grass, spent brewing grains) and ligneous (i.e. maple wood chips and saw dust) reactor matrices were tested. Five bioreactors along with one control reactor containing only limestone were constructed at the Tab-Simco abandoned mine land (AML) site in southern Illinois, USA. The field experiments were monitored over ~ one year (377 days) to evaluate the physical, geochemical and microbiological parameters which dictate ASRB efficiency in remediation of AMD contaminants. Results from this experiment documented contaminant removal in all reactors. However, the bioreactors established SRM populations that contributed to enhanced removal of SO4, Fe, and trace metals (i.e. Cu, Cd, Zn, Ni). Geochemical assessment of the aqueous environments established within the bioreactors suggested multiple pathways of contaminant sequestration. This included the formation of Fe-oxyhydroxide precipitates, adsorption, co-precipitation (e.g. Zn/Ni-Ferrites) and bio-induced sulfide mineralization. Activity of the SRMs was dependent on temperature, with bioreactors exhibiting decreases in both effluent sulfide concentrations and 34S-depletion of sulfate during low-T months (i.e. T < 10°C). Overall, maximum remediation of dissolved constituents SO4, Fe, Al and Mn was obtained in the predominantly herbaceous bioreactors. Extrapolation of our results to the full-scale Tab-Simco bioreactor indicated that, over the course of one year, the herbaceous bioreactors would remove ~75,600 kg SO4, 21,800 kg Fe, 8000 kg Al, and 77 kg Mn. This represents a 21.7 wt%, 41.5 wt%, 9.4 wt% and 81.8 wt% increase in SO4, Fe, Al and Mn removal over dominantly ligneous bioreactors, respectively. Although the overall Fe removal within the limestone control reactor reached 44.5 mol%; removal of 19.5 mol% SO4 and 36.9 mol% Al from influent AMD were significantly less when compared to the bioreactors. These results imply that ASRB technologies are promising in remediation of coal-generated AMD and increasing herbaceous content of bioreactors can significantly enhance contaminant sequestration. However, geochemical results also displayed seasonal variation in redox gradients within our field ASRB's which may induce dissolution of the redox sensitive phases produced within bioreactors. Furthermore, optimal microbial-mediated sulfate reduction may be inhibited by the high surface areas of the abundant Fe/Al-oxyhydroxides which dominate the system. Therefore, to enhance ASRB remediation capacity, future designs must optimize not only the organic carbon substrate but also include a pretreatment phase in which the bulk of dissolved Fe/Al-species are removed from the influent AMD prior to entering the bioreactor.
|
3 |
Characterization of Drainage Chemistry in Fanny Creek Catchment and Optimal Passive AMD Treatment Options for Fanny CreekMackenzie, Andrew Ian January 2010 (has links)
Fanny Creek drains from Island Block opencast coal mine, near Reefton on the West Coast of the South Island of New Zealand, and is impacted by acid mine drainage (AMD). The objectives of this study were to characterise drainage chemistry in Fanny Creek catchment, and to determine optimal passive treatment strategies for Fanny Creek AMD for future pilot or full-scale application. This was undertaken by monthly monitoring in Fanny Creek catchment between February 2008 and January 2009 to collect drainage chemistry and flow data. Laboratory trials of suitable passive AMD treatment systems were conducted and their treatment performance assessed to select and design optimal passive treatment strategies for Fanny Creek AMD.
Oxidation of pyrite in Brunner Coal Measure sediments at Island Block mine generates AMD. Fanny Creek originates from a number of AMD seeps on the eastern waste rock slope of Island Block mine. Seeps have low pH (<3.23) and a single detailed metal analysis indicates drainage is enriched with aluminium and iron, and contains elevated concentrations of manganese, copper, nickel, zinc and cadmium relative to applicable water quality criteria such as ANZECC guidelines. Acidity and metal loadings of drainage in the catchment indicates AMD from the northern waste rock slope contributes most of the acidity (~70%) and metal (60%) in Fanny Creek, and acts to re-dissolve additional metals upon mixing with drainage from other slopes.
The most suitable location for a passive AMD treatment system in Fanny Creek catchment is on the Waitahu Valley floor, near monitoring site R12, because this allows for sediment removal prior to a treatment system. Fanny Creek AMD at site R12 was characterized in detail because this data assists with selection and design of passive AMD treatment systems. Fanny Creek at site R12 contains on average 6.0 mg/L aluminium, 1.3 mg/L iron, 3.1 mg/L manganese, 0.49 mg/L zinc, 0.14 mg/L nickel, 0.0071 mg/L copper and 0.00048 mg/L cadmium. Average pH at site R12 was 3.95, calculated acidity averaged 42.7 mg CaCO₃/L, and flow rate ranged from 1.5 L/s to about 30 L/s. Acidity and metal generation from Island Block mine increases linearly with flow in the catchment, and therefore Fanny Creek drainage chemistry is not significantly affected by rainfall dilution. Natural attenuation of AMD occurs by addition of un-impacted alkaline drainage from Greenland Group basement rocks, wetland ecosystem processes, and geochemical reactions along Fanny Creek that decrease acidity and
metal concentrations before AMD discharges into the Waitahu River. During low flow conditions (summer months), surface flow of AMD into the Waitahu River does not occur because of subsurface flow loss.
Three suitable passive AMD treatment options for Fanny Creek AMD were selected and trialed at ‘bench top’ scale in a laboratory. These included a sulfate reducing bioreactor (SRBR), a limestone leaching bed (LLB), and an open limestone channel (OLC). The potential to mix Waitahu River water with Fanny Creek to neutralize AMD was also investigated. Fanny Creek AMD was employed for laboratory trials, and influent flow rates into SRBR, LLB and OLC systems were regulated to assess performance at different hydraulic retention times (HRT). Optimal HRTs for future treatment system designs were determined from effective AMD treatment thresholds, and include 51 hours, 5 hours and 15 hours for SRBR, LLB and OLC systems, respectively.
To determine optimal treatment options for Fanny Creek AMD the effectiveness of each trial option was compared to applicable water quality criteria, and scale up implications of treatment options was assessed. The SRBR system had most effective AMD treatment, with water quality criteria achieved for metals, greatest alkalinity generation, and highest pH increase. However, a full scale SRBR system has significant size requirements, and long term treatment performance may be limited. The LLB system decreased metals to below, or just slightly above criteria for all metals, and has significantly smaller size requirements compared to a SRBR system. The OLC system was least effective, with effluent above water quality criteria for all metals except iron, and with lowest alkalinity generation. The Waitahu River is capable of neutralizing AMD because it is slightly alkaline. The flow volume of river water required for neutralization is between 65 L/s and 140L/s, which can be gravity fed to mix with Fanny Creek. These results indicate that either a LLB treatment system or the Waitahu River Mixing option are the optimal passive treatment strategies for Fanny Creek AMD. On site pilot scale testing of SRBR and LLB systems, and the Waitahu River Mixing option is recommended because of AMD treatment uncertainty, and to more accurately select and design full scale passive treatment strategies.
|
Page generated in 0.0562 seconds