Spelling suggestions: "subject:"higerbioavailability"" "subject:"andbioavailability""
1 |
Heavy metals in the overlying water and bottom sediments of Shing Mun River and inner Tolo Harbour.January 1996 (has links)
Thesis (M.Phil.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (leaves 113-120). / Abstract --- p.i / Acknowledgement --- p.iii / Table of Contents --- p.iv / List of Tables --- p.viii / List of Figures --- p.xii / Chapter CHAPTER 1. --- INTRODUCTION --- p.1 / Chapter 1.1 --- Previous Heavy Metal Studies of Hong Kong Marine Waters and Sediments --- p.4 / Chapter 1.2 --- Speciation of Metals in Aquatic Environment --- p.6 / Chapter 1.2.1 --- Speciation of Metals in Water --- p.7 / Chapter 1.2.2 --- Speciation of Metals in Bottom Sediments --- p.7 / Chapter 1.3 --- AVS in Marine Sediments --- p.10 / Chapter 1.3.1 --- Formation of AVS --- p.10 / Chapter 1.3.2 --- Seasonal and Spatial Variation of AVS --- p.11 / Chapter 1.3.3 --- AVS as Mediator of Metal Toxicity --- p.13 / Chapter 1.3.4 --- Chemical Basis for AVS Sediment Normalization --- p.15 / Chapter 1.3.5 --- Analysis of Pore Water Metals --- p.17 / Chapter 1.4 --- Significance of the Research --- p.18 / Chapter 1.4.1 --- Importance of Metal Bioavailability Study in Hong Kong --- p.18 / Chapter 1.4.2 --- Importance of AVS Study in Hong Kong --- p.19 / Chapter 1.4.3 --- Approach of the Present Study --- p.21 / Chapter 1.5 --- Organization of the Thesis --- p.22 / Chapter CHAPTER 2. --- METHODOLOGY --- p.23 / Chapter 2.1 --- Study Area --- p.24 / Chapter 2.2 --- Sampling Strategy --- p.25 / Chapter 2.2.1 --- Sampling Locations --- p.25 / Chapter 2.2.2 --- Sampling Dates --- p.28 / Chapter 2.2.3 --- Sample Collection and Handling --- p.28 / Chapter 2.3 --- Sample Analysis --- p.32 / Chapter 2.3.1 --- Sediment Analysis --- p.32 / Chapter 2.3.2 --- Pore Water and Overlying Water Analysis --- p.34 / Chapter 2.3.3 --- Limitations --- p.36 / Chapter 2.4 --- Statistical Analysis --- p.39 / Chapter CHAPTER 3. --- METALS IN WATER AND BOTTOM SEDIMENTS --- p.40 / Chapter 3.1 --- Metals in the Water --- p.40 / Chapter 3.1.1 --- Variation of Metal Concentrations --- p.41 / Chapter 3.1.2 --- Metal Pollution Level of the Overlying Water --- p.42 / Chapter 3.2 --- Metals in Bottom Sediments --- p.44 / Chapter 3.2.1 --- Spatial Distribution Pattern of Heavy Metals --- p.44 / Chapter 3.2.2 --- Temporal Variation of Metal Content in the Bottom Sediments --- p.48 / Chapter 3.2.3 --- Metal Pollution Level of the Bottom Sediments --- p.49 / Chapter 3.3 --- Conclusion --- p.50 / Chapter CHAPTER 4. --- SPECIATION OF METALS IN THE OVERLYING WATER AND BOTTOM SEDIMENTS --- p.51 / Chapter 4.1 --- Speciation of Metals in the Overlying Water --- p.51 / Chapter 4.1.1 --- Concentration of Labile Metals in the Overlying Water --- p.52 / Chapter 4.1.2 --- Seasonal and Spatial Variation in the Concentration of Labile Metals in the Overlying Water --- p.54 / Chapter 4.1.3 --- Percentage of Labile Fraction in Total Metals --- p.55 / Chapter 4.2 --- Speciation of Metals in the Bottom Sediments --- p.59 / Chapter 4.2.1 --- Proportion of Various Metal Species in the Sediments --- p.60 / Chapter 4.2.2 --- Variation of the Overlying Water Properties --- p.63 / Chapter 4.2.2.1 --- Chemical Properties of the Water in the Study Area --- p.63 / Chapter 4.2.2.2 --- Seasonal Variation of Water Properties --- p.67 / Chapter 4.2.2.3 --- Stratification of the Water Column --- p.69 / Chapter 4.2.3 --- Implication of the Changes of Water Quality on Metal Remobilization --- p.73 / Chapter CHAPTER 5. --- VARIATION OF AVS AND ITS ROLE IN METAL TOXICITY MEDIATION --- p.77 / Chapter 5.1 --- Variation of AVS in the Study Area --- p.78 / Chapter 5.1.1 --- Spatial Variation of AVS --- p.78 / Chapter 5.1.2 --- Seasonal Variation of AVS --- p.81 / Chapter 5.1.3 --- Vertical Variation of AVS --- p.85 / Chapter 5.1.4 --- Effects of AVS Variation on Metal Bioavailability --- p.88 / Chapter 5.2 --- Role of AVS in Metal Toxicity Mediation --- p.91 / Chapter 5.2.1 --- SEM/AVS Molar Ratio --- p.91 / Chapter 5.2.2 --- Fraction of SEM in Total Metals of the Sediments --- p.94 / Chapter 5.2.3 --- Labile Metals in Pore Water --- p.96 / Chapter 5.2.4 --- Dissolved Sulfides in the Pore Water and Overlying Water --- p.99 / Chapter 5.3 --- Conclusion --- p.100 / Chapter CHAPTER 6. --- CONCLUSION --- p.102 / Chapter 6.1 --- Introduction --- p.102 / Chapter 6.2 --- Major Findings --- p.103 / Chapter 6.3 --- Practical Implication of the Findings --- p.108 / Chapter 6.4 --- Suggestion for Further Studies --- p.110 / Bibliography --- p.113 / Appendix A. AVS Extraction and Detection Method --- p.121 / Appendix B. Sequential Extraction Method for Metals Speciation Analysis --- p.123 / Appendix C. Instrument List for the Experiments --- p.125 / Appendix D. Monthly Total Rainfall and Mean Temperature of1995 --- p.127 / Appendix E. Analytical Results of the Overlying Water --- p.128 / Appendix F. Analytical Results of the Bottom Sediments --- p.132 / Appendix G. Analytical Results of the Pore Water --- p.136 / Appendix H. Concentration (μg/g) and Fraction (%) of Pbin Sediments --- p.140 / Appendix I. Concentration (μg/g) and Fraction (%) of Cuin Sediments --- p.142 / Appendix J. Concentration (μg/g) and Fraction (%) of Cdin Sediments --- p.144 / Appendix K. Concentration (μg/g) and Fraction (%) of Znin Sediments --- p.146 / Appendix L. Concentration (μg/g) and Fraction (%) of Niin Sediments --- p.148 / Appendix M. Fraction of Different Speciations of Metals in the Sediments --- p.150 / Appendix N. Vertical Profile of Dissolved Oxygen in the Overlying Water --- p.155 / Appendix O. Vertical Profile of Salinity in the Overlying Water --- p.159 / Appendix P. Vertical Profile of Temperature in the Overlying Water --- p.163 / Appendix Q. Vertical Profile of pH in the Overlying Water --- p.167
|
Page generated in 0.0705 seconds