• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solid-state NMR Studies of Ion Dynamics in Proton-Conducting Polymers and Composites

Ye, Gang 08 1900 (has links)
High resolution solid state 1H NMR is used to investigate proton mobility of Nafion, Sulfonated Polyether Ether Ketones(S-PEEK) and their composites, which provides better understanding of their proton conductivities. Proton exchange between sulfonic acid groups and water was observed in these materials. The proton mobility is dependent on both the temperature and the water content. Variable temperature experiments were used to determine the activation energy for proton transportation which generally increases with decrease in hydration level. The preparation of Nafion/SiO2 composites can cause large difference in proton diffusion coefficients and proton conductivities in dried states. This indicates that the amount of dopants needs to be optimized to minimize the blocking of proton diffusion pathways by dopant particles. Detailed information on the control of surface hydroxyl groups in Nafion/SiO2 is obtained through the combination of 29Si and 1H NMR. Although hydrated Nafion/ZrP composites show reduced proton activation energy, they present lower proton conductivity at 35°C than unmodified Nafion. For composites dried at 160°C, both the conversion of monohydrogen phosphate into pyrophosphate and the protonation of monohydrogen phosphate have been observed, which could be one of reasons for the decreased proton conductivity after rehydration. Under high humidification, a single or multiple sulfonic acid proton environments was observed in S-PEEKs, which explains the small proton conductivity difference between some of S-PEEKs. However, the observed conductivity difference for S-PEEKs cast from different solvents was attributed to distinct mobilities of polymer chains. In the crosslinked S-PEEK, not all the crosslinkers of ethylene glycol are fully crosslinked. Proton exchange between residual sulfonic acid and hydroxyls of the crosslinker was observed, which is the primary reason that the crosslinked S-PEEK, with very low residual degree of sulfonation (13 %), still shows proton conductivity comparable to those of S-PEEKs. / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.0831 seconds