• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biophysical Studies of the First Nucleotide Binding Domain of SUR2A

de Araujo, Elvin Dominic 23 August 2011 (has links)
ATP-sensitive potassium (KATP) channels have crucial roles in several biological processes. KATP channels possess four regulatory sulfonylurea receptors. The SUR proteins are members of the ubiquitous ATP-binding cassette (ABC) superfamily. However, unlike most ABC proteins, SURs do not transport substrates but function strictly as regulators of KATP channel activity. Currently, studies into the molecular basis by which various mutations in SUR2A cause disease are highly limited. This is primarily a consequence of poor solubility of isolated SUR2A NBDs, as is typical for many eukaryotic NBDs. By employing structure-based sequence alignments and biophysical studies, we determined domain boundaries for SUR2A NBD1 that enabled, for the first time, NMR studies of NBD1. Our biophysical studies demonstrate that the isolated SUR2A NBD1 is folded and exhibits differential dynamics upon ATP binding activity. Additional studies are now possible to examine the effects of disease-causing mutations on structure, dynamics, and interactions of NBD1.
2

Biophysical Studies of the First Nucleotide Binding Domain of SUR2A

de Araujo, Elvin Dominic 23 August 2011 (has links)
ATP-sensitive potassium (KATP) channels have crucial roles in several biological processes. KATP channels possess four regulatory sulfonylurea receptors. The SUR proteins are members of the ubiquitous ATP-binding cassette (ABC) superfamily. However, unlike most ABC proteins, SURs do not transport substrates but function strictly as regulators of KATP channel activity. Currently, studies into the molecular basis by which various mutations in SUR2A cause disease are highly limited. This is primarily a consequence of poor solubility of isolated SUR2A NBDs, as is typical for many eukaryotic NBDs. By employing structure-based sequence alignments and biophysical studies, we determined domain boundaries for SUR2A NBD1 that enabled, for the first time, NMR studies of NBD1. Our biophysical studies demonstrate that the isolated SUR2A NBD1 is folded and exhibits differential dynamics upon ATP binding activity. Additional studies are now possible to examine the effects of disease-causing mutations on structure, dynamics, and interactions of NBD1.
3

Syntaxin-1A Inhibits Cardiac ATP-Sensitive Potassium Channels by Direct Interaction with Distinct Domains within Sulphonylurea Receptor 2A Nucleotide-Binding Folds

Chao, Christin Chih Ting 13 January 2010 (has links)
KATP channels couple cell metabolic status to the membrane excitability by sensing the cytoplasmic ATP/ADP ratio. Present studies examined how conserved motifs (Walker A (WA), signature sequence (L), and Walker B (WB)) within each NBF of SUR2A bind to Syn-1A to affect its actions on cardiac KATP channels. In vitro binding experiments illustrated that Syn-1A binds cardiac SUR2A at WA and L of NBF-1 and WA, L, and WB of NBF-2. Electrophysiology experiments on stably expressing SUR2A/Kir6.2 cell-lines showed that only L and WB of NBF-1 and all three NBF-2 motifs could abrogate the inhibitory effect of Syn-1A on SUR2A/KATP channels. These results lead me to hypothesize that more independent motif in NBF-2 can bind and abrogate Syn-1A’s inhibition than NBF-1 on SUR2A/KATP channels. A corollary postulate is that Syn-1A acts as a scaffold to secure the NBF-1 and -2 in dimer conformation required for SUR2A to modulate Kir6.2 gating.
4

Syntaxin-1A Inhibits Cardiac ATP-Sensitive Potassium Channels by Direct Interaction with Distinct Domains within Sulphonylurea Receptor 2A Nucleotide-Binding Folds

Chao, Christin Chih Ting 13 January 2010 (has links)
KATP channels couple cell metabolic status to the membrane excitability by sensing the cytoplasmic ATP/ADP ratio. Present studies examined how conserved motifs (Walker A (WA), signature sequence (L), and Walker B (WB)) within each NBF of SUR2A bind to Syn-1A to affect its actions on cardiac KATP channels. In vitro binding experiments illustrated that Syn-1A binds cardiac SUR2A at WA and L of NBF-1 and WA, L, and WB of NBF-2. Electrophysiology experiments on stably expressing SUR2A/Kir6.2 cell-lines showed that only L and WB of NBF-1 and all three NBF-2 motifs could abrogate the inhibitory effect of Syn-1A on SUR2A/KATP channels. These results lead me to hypothesize that more independent motif in NBF-2 can bind and abrogate Syn-1A’s inhibition than NBF-1 on SUR2A/KATP channels. A corollary postulate is that Syn-1A acts as a scaffold to secure the NBF-1 and -2 in dimer conformation required for SUR2A to modulate Kir6.2 gating.
5

Etude structure-fonction du canal Kir6.2 et de son couplage avec des partenaires naturels et artificiels / Structure-function studies of the Kir6.2 channel and of its coupling with natural and artificial partners

Principalli, Maria Antonietta 09 October 2015 (has links)
Les canaux potassiques sensibles à l'ATP (K-ATP) jouent un rôle fondamental au sein de la cellule, puisqu'ils ajustent le potentiel de membrane en fonction de l'état métabolique. Ils combinent deux types de protéines: le récepteur des Sulfonylurée (SUR), protéine régulatrice faisant partie des transporteurs ABC, et le canal potassique rectifiant entrant Kir6. Elles s'associent en formant un hétérooctamère (4 SUR/4 Kir6) d'une taille de ~ 1MDa. A l'heure actuelle, l'unique structure disponible de ce complexe est une structure basse-résolution de 18 Å qui ne permet pas de visualiser correctement l'arrangement des différentes sous-unités. Le but principal de ce projet de thèse était d'obtenir des informations à la fois structurales et fonctionnelles sur le couplage entre Kir6.2 et SUR.Il existe 2 isoformes du Kir6 humain (Kir6.1 et 6.2) et 3 isoformes de SUR : SUR1, principalement exprimée avec Kir6.2 dans les cellules β pancréatiques et les neurones ; SUR2A, très abondante avec Kir6.1 dans les muscles cardiaques et squelettiques ; et SUR2B, présent avec Kir6.1 au niveau des muscles lisses. La façon dont SUR est capable de moduler l'ouverture du canal en réponse à la fixation d'un ligand est encore mal comprise.Au sein du canal K-ATP, SUR a un rôle de modulateur du gating de Kir6.2. Il a été montré que trois résidus (E1305, I1910, L1313) dans SUR2A, étaient impliqués dans la « voie d'activation » liant la fixation d'un ligand sur SUR2A et l'ouverture du canal Kir6. Afin d'examiner le rôle des résidus correspondants au sein de SUR1, nous avons réalisé des chimères entre SUR1 et le transporteur ABC MRP1 (qui n'interagit pas avec Kir6.2) et utilisé la technique du patch-clamp pour évaluer leur fonctionnalité. Nos résultats ont montré que les mêmes résidus au sein de SUR1 et SUR2A sont impliqués dans l'association fonctionnelle avec Kir6.2, mais que les spécificités au niveau de la chaine latérale pourraient expliquer les propriétés propres aux canaux pancréatiques et cardiaques. En effet, dans le pancréas, les canaux SUR1/Kir6.2 sont partiellement actifs au repos tandis que les canaux SUR2A/Kir6.2 du cœur sont principalement fermés. Cette spécificité peut être expliquée par les interactions spécifiques de SUR1 et SUR2A avec Kir6.2.La participation du canal Kir6.2 dans le couplage avec SUR ne peut être facilement étudiée puisque la région allant du N-terminal de Kir6.2 jusqu'à sa première hélice est physiquement associée à SUR. Des mutations à ce niveau pourraient affecter à la fois l'interaction physique et fonctionnelle avec SUR. Pour passer outre cet obstacle, nous avons utilisé la technologie ICCR développée dans notre laboratoire. Les ICCRs sont des protéines artificielles créées par couplage physique du C-terminal d'un RCPG au N-terminal de Kir6.2. Cette technologie permet l'étude de la fonction du N-ter de Kir6.2 puisque la fusion entre le RCPG et le canal assure une association fonctionnelle : le signal électrique généré par le canal ionique est directement lié à la fixation du ligand sur le RCPG. Le domaine reliant les deux protéines est essentiel pour la fonction de l'ICCR et sa longueur affecte la régulation du canal. De façon intéressante, deux ICCRs de même longueur mais ayant 9 résidus de différence présentent deux phénotypes différents : un fonctionnel, un inactif. L'ICCR inatif est caractérisé par la perte des résidus 26 à 34 du N-ter contenant 5 arginines. Nous avons réalisé la cartographie fonctionnelle de ces résidus essentiels pour la régulation de Kir6.2. Successivement, nous avons effectué les mêmes mutations d'arginines au sein du canal naturel K-ATP, mais n'avons pas observé de différence entre le canal muté et sauvage. Ces résultats suggèrent qu'il existe au moins deux voie de régulation pour le gating de Kir6.2 : une via les arginines du N-ter (utilisé par les RCPGs) et l'autre, toujours inconnue, utilisée par SUR. / ATP-sensitive potassium (K-ATP) channels play a key role in adjusting the membrane potential to the metabolic state of cells. They result from the unique combination of two proteins: the SulfonylUrea Receptor (SUR), a protein of the ABC transporters family, and the inward rectifier K+ channel Kir6. Both subunits associate to form a heterooctamer (4 SUR/4 Kir6) of ~ 1MDa. A high-resolution structure of the complex is still missing. To date, only a 18 Å structure of the full complex is available. Unfortunately, the low resolution prevent visualization of subunits arrangement. This PhD project aimed at obtaining structural and functional information on the functional coupling between Kir6.2 and SUR. Structural studies are still in progress.While 2 isoforms of the human Kir6 protein exists (Kir6.1 and 6.2), 3 isoforms of the SUR protein are known: SUR1, mostly expressed in pancreatic β-cells and neurons mainly with Kir6.2, SUR2A, abundant in cardiac and skeletal muscle mainly with Kir6.2, and SUR2B, found in smooth muscle mostly with Kir6.1. How SUR modulates channel gating in response to the binding of ligands is still poorly understood.The SUR protein belongs to a family of transporters but in K-ATP works as a gating modulator. How a 'transporter' modulate Kir6 gating? In SUR2A three residues (E1305, I1310, L1313) were found to be implicated in the ‘activation pathway' linking binding of openers to SUR2A and channel opening. To examine the role of the matching residues in the SUR1 isoform, we designed chimeras between SUR1 and the ABC transporter MRP1 (which does not interact with Kir6.2), and used patch clamp to assess the functionality of SUR1/MRP1 K-ATP chimeric channels. Our results reveal that the same residues in SUR1 and SUR2A are involved in the functional association with Kir6.2, but they display side-chain specificities that could account for the contrasted properties of pancreatic and cardiac K-ATP channels. In fact, in pancreas, SUR1/Kir6.2 channels are partly active at rest while in cardiomyocytes SUR2A/Kir6.2 channels are mostly closed. This divergence of function could be related to differences in the interaction of SUR1 and SUR2A with Kir6.2.The participation of the Kir6.2 channel in the coupling with SUR cannot be easily studied, as the region spanning from Kir6.2 N-terminal to its first helix is in thigh physical association with SUR. Mutations at this level could affect both physical and functional interaction with the regulatory subunit. To overcome this obstacle we used the ICCR technology developed in our laboratory. ICCRs are artificial proteins created by physical and functional linkage of a GPCR C-terminus to the Kir6.2 N-terminus. ICCRs provide a unique method to study the function of the Kir6.2 channel N-terminal, as the fusion between GPCR and channel ensure physical association. In ICCRs the electrical signal generated by the ion channel is directly linked to ligand binding on the GPCR. The domain linking GPCR and channel is crucial for ICCR function and its length affects channel regulation. Interestingly, two ICCRs, having identical linker length but nine residues differences at the fusion point, showed different phenotypes: one functional, one inactive (no channel regulation). The inactive ICCR is characterized by the lack of residues 26 to 34 in the channel N-terminus containing 5 arginines. We functionally mapped these arginines and identify specific residues essential for Kir6.2 regulation. Successively, we transferred this knowledge to the K-ATP mutating the previously found essential arginines. Here, we did not observe any change compared to wild-type channels. This result suggest that there are at least two ways to modulate Kir6.2 gating: one through the arginines in the N-terminal (used by the GPCR) and another, still unknown, used by SUR.
6

Etudes moléculaires du canal potassique sensible a l'ATP : "gating", pathologie et optogénétique / Molecular studies of ATP-sensitive potassium channels : gating, pathology, and optogenetics

Reyes Mejia, Gina Catalina 23 September 2016 (has links)
Les canaux potassiques sensibles à l’ATP (KATP) sont des canaux omniprésents liant excitabilité et énergie cellulaire. Ils fonctionnent en captant le niveau relatif des nucléotides ATP et ADP à l’intérieur des cellules: Les premiers bloquant le canal et les derniers l’activant. De plus le phospholipide phosphatidylinositol4,5-bisphosphate (PIP2) est connu pour être un puissant régulateur des canaux KATP. Ceux-ci sont présents dans la plupart des tissus excitables et sont impliqués dans un grand nombre de fonctions physiologiques. L’objectif de ma thèse consiste à désigner un bloc dépendant de la lumière au niveau de ces KATP, afin de contrôler son activité optiquement tout en gardant ses propriétés natives. Cela a été accompli par la mutation de différents résidus en cystéine. Ce canal KATP complètement dépendant de la lumière, pourrait être utilisé pour réguler les actions de potentiels via la lumière afin de piloter différents aspects d’électrophysiologie cellulaire mais aussi de développer des applications de photo-traitements.J’ai également réalisé la cartographie fonctionnelle des résidus impliqués dans le gating du canal Kir6.2 sous le contrôle de protéines membranaires interagissant avec le domaine N-terminal. Cela a été réalisé par le design d’un canal artificiel Kir6.2 formé par la fusion du C-terminal d’un RCPG avec le N-terminal du canal. Des structures cristallographiques et des caractérisations fonctionnelles des canaux potassiques ont permis de mettre en évidence la présence de deux portes dans les domaines transmembranaires : le filtre de sélectivité et le « gate A » à l’interface cytoplasmique, et le troisième « gate » dans le domaine cytoplasmique du canal Kir connu sous le nom de « G loop gate ». Enfin j’ai caractérisé de mutations dans le gène ABCC9 codant pour SUR2A et associé au syndrome de Cantu (CS). Ces mutations sont localisées dans le domaine transmembranaire 0 (TMD0) de SUR2A, un domaine essentiel dans l’interaction entre Kir6.2 et SUR dans le complexe KATP. Les résultats suggèrent que les deux mutations cause une hyperactivité du canal via 2 mécanismes distincts : (1) Une diminution de la sensibilité de l’ATP affectant la modulation du PIP2, mais qui n’affecte pas l’activation par le Mg-ADP ou (2) aucun effets en réponse à l’ATP ou Mg-ADP, mais une sensibilité accrue au PIP2. Ces découvertes soulignent le rôle essentiel du TMD0 dans la modulation du « gating » de Kir6.2. En particulier, cela démontre qu’il y a un contrôle de la réponse du canal par des effecteurs intracellulaires qui se fixent sur Kir6.2, impliquant des interactions très liées entre Kir6.2 et la région TMD0. / ATP-sensitive K+ (KATP) channels are ubiquitous channels designed to couple excitability to cellular energy. They perform this function by sensing the relative levels of the intracellular nucleotides ATP and ADP; with ATP blocking the channel and ADP activating it. Additionally, the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) is known to be a strong regulator of KATP channels. These channels are present in many excitable tissues and involved in many physiological functions. The aim of this thesis is to design a light dependent block of the KATP channel, in order to control its activity and have it under optical control while at the same time retaining its native properties. This was accomplished by mutating specific residues to cysteines. This light dependent blocked KATP channel, could be used to regulate action potentials with light to tune diverse aspects of cellular electrophysiology and potentially photo-pharmacology treatment. We also performed a functional mapping of the Kir6.2 channel gate(s) under the control of membrane proteins interacting with the N-terminal domain. This was performed by using a unique artificial gate Kir6.2 channel formed by fusing a GPCR C-terminus to the Kir6.2 N terminus. Crystallographic structures and functional characterizations of potassium channels demonstrated the presence of two gates in the transmembrane domains: the selectivity filter and the "A" gate at the cytoplasmic interface, and a third gate in the cytoplasmic domain of Kir channels known as the G loop gate. Unexpectedly, our results demonstrated that several gates could be involved suggesting a concerted mechanism. Finally, we characterized two single-point mutations in the ABCC9 gene encoding SUR2, that are associated with Cantu syndrome (CS). These mutations are localized in transmembrane domain 0 (TMD0) of SUR2A, an essential domain which mediates the interaction between Kir6.2 and SUR within the K-ATP channel complex. Results suggest that the two mutations cause KATP channel hyperactivity through two divergent mechanisms: (1) a decreased sensitivity to ATP inhibition and affecting the modulation by PIP2, and that does not affect activation by Mg-ADP or (2) any effect on the response to ATP and Mg-ADP, but more sensitive to activation by PIP2. These discoveries underline the essential role of TMD0 in the gating modulation of Kir6.2. They demonstrate in particular that it can control the response of the channel to intracellular effectors that bind to Kir6.2, implying tight interactions between Kir6.2 and the TMD0 region.

Page generated in 0.0461 seconds