• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 1
  • Tagged with
  • 32
  • 32
  • 32
  • 15
  • 12
  • 8
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

CO2 Pyrolysis and Gasification of Kraft Black

Connolly, T. Sean January 2006 (has links) (PDF)
No description available.
12

Development of a pilot scale black liquor gasifier.

04 May 2011 (has links)
The use of black liquor gasification as an alternative to conventional chemical and energy recovery systems for spent liquors is an area of particular interest to the pulp and paper industry. The motivation to explore this technology is to improve the thermal efficiency of the recovery process by utilizing the energy content of the spent black liquor more effectively and provide chemical recovery for sodium and sulphur containing liquors for a local pulp and paper mill. A study of the available gasification technologies showed that the steam reforming process marketed by ThermoChem Recovery International is particularly suited to the mill in that it can handle a change to a sulphite pulping chemistry and also handle silica removal which is an inherent problem with the bagasse raw material that the mill uses. However the technology required further development and confirmation of process suitability before implementation at the mill. This aim of this project was to build and operate a gasifier based on the TRI concept to determine if this process is suitable for recovery of SASAQ black liquor from bagasse pulping. This included gaining an understanding of the process variables like the black liquor solids composition and the non-process element levels and required carrying out a mass balance on inorganic components across the reactor as well. The focus of this investigation was primarily on the front end of the project and entailed basic and detailed design of a pilot gasification unit. The pilot unit was subsequently constructed, commissioned and operated to prove the unit met the design intent. Preliminary results showing the conceptual proof of the technology are presented as well as performance tests showing the unit capability of gasifying a 3.1 1Ihr 60% solid content black liquor feed. Problematic areas that could influence the design of a scale-up unit were identified and highlighted for further development, with proposed solutions. / Thesis (M.Sc.)-University of KwaZulu-Natal, Durban, 2005.
13

Liquor to liquor differences and the effects of liquor feed rate on the distribution of condensed phase combustion products of kraft black liquor solids burned in a laminar entrained-flow reactor

Train, Ron 08 June 2001 (has links)
Combustion properties of kraft black liquor solids were studied using a laminar entrained flow reactor. The tendency of black liquors to release fume (compounds containing Na⁺, K⁺, Cl⁻, SO₄²⁻, SO₃²⁻, S₂0₃²⁻ and C0₃²⁻) during combustion were observed at 1000°C. Black liquor solids with a size fraction of 63 to 100 μm were burned in a mixture of 4% 0₂ and 96% N₂ at a residence time of 0.67 seconds. Combustion properties of one black liquor (liquor #3) were studied by varying the solids feed rate from 0.47 to 1.08 g/min (liquor feed rate study). Combustion properties of five North American and Finnish black liquors were studied at a target solids feed rate of 0.73 g/min (liquor to liquor study). Black liquor fuming was observed to be a decreasing function of solids feed rate and an increasing function of excess oxygen. The appearance of char residues varied from black and porous at high solids feed rates to white and dense at low solids feed rates. Combustion may have been enhanced at low solids feed rates by liquor swelling due to a combination of heat and mass transfer effects and limited at high solids feed rates by inter-particle and bulk gas mass transfer limitations. For the liquor to liquor study, black liquors were observed to release fume differently. Chars produced during this study varied in appearance, indicating that the black liquors had unique combustion properties. Variations in temperature and mass transfer effects resulting from liquor swelling properties were likely responsible for the variability in liquor fuming behavior. The liquors that contained the most NaCl and had the highest anionic equivalents as C0₃²⁻ (or other chemical species) produced the most fume. Sodium vaporization varied from 25.2% to 33.7%: Liquors #2 and #5 vaporized the most sodium and also had the lowest concentrations of measured anions in their char residues. Potassium and chloride enrichment factors for the five liquors were slightly lower than those of common industrial boilers. Liquor #3 had a concentration of Cl⁻ that was (roughly) an order of magnitude higher than the other liquors studied; however, it also had the lowest chloride enrichment factor. / Graduation date: 2002
14

An investigation of the mechanisms of heat transfer to multicomponent solutions under convective boiling conditions.

Lavery, Hugh P. 01 January 1981 (has links)
No description available.
15

Swelling of kraft black liquor

Miller, Paul T. 01 January 1986 (has links)
No description available.
16

Fate of carbon-containing compounds from gasification of kraft black liquor with subsequent catalytic conditioning of condensable organics

Sricharoenchaikul, Viboon 08 1900 (has links)
No description available.
17

Preliminary study of modeling of NO formation during black liquor combustion

Rompho, Nopadol 21 February 1997 (has links)
The importance of two sources of NO formation, nitrogen in combustion air and nitrogen in the fuel, during black liquor combustion was studied using a laminar entrained flow reactor. Pyrolysis and combustion experiments were conducted in nitrogen atmosphere and in a mixture of argon and helium in the composition 99% argon, 1% helium. The experiments were performed at three different temperatures: 700, 900, and 1100��C and at two residence times: 0.6 and 1.6 seconds. The results indicated that there was NO formation from the combustion air which was found to be prompt NO. There was NO formation from combustion air at all temperatures, and it decreased as temperature increased. Depending on conditions, prompt NO formation accounted for 6-80% of the total NO formation. NO reduction experiments were conducted to investigate the effect of molten sodium carbonate on NO reduction. The experiments were performed at two different temperatures, 800��C which is lower than the melting point of sodium carbonate and 900��C which is higher than the melting point of sodium carbonate. The rate constant for NO reduction was calculated and was found to agree well with that obtained in a previous study. The effect of the molten sodium carbonate on NO reduction was found to be negligible during black liquor pyrolysis. The rate in absence of any reducing gas components could explain NO reduction during black liquor combustion only to a limited extent. Models for nitrogen evolution during pyrolysis and combustion were developed by using data from previous studies. A model for nitrogen release during pyrolysis was developed as a function of residence time and temperature. Nitrogen release during pyrolysis was also found to be directly proportional to carbon release and the rate of nitrogen evolution with respect to the rate of carbon evolution decreased as temperature increased. / Graduation date: 1997
18

Potassium and chloride release during black liquor combustion

Reis, Victor Vinicius 29 July 1994 (has links)
Graduation date: 1995
19

SO��� capture and HCl release at Kraft recovery boiler conditions

Boonsongsup, Lerssak 03 September 1993 (has links)
Graduation date: 1994
20

An overall model of the combustion of a single droplet of kraft black liquor

Kulas, Katherine A. 01 January 1990 (has links)
No description available.

Page generated in 0.0576 seconds