• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stability of catalytic plate reactors

Tomlinson, David January 1995 (has links)
No description available.
2

Aqueous Phase Oxidation Of Sulfur Dioxide In Stirred Slurry Reactors

Gopala Krishna, K V January 1994 (has links)
Air pollution by sulfur dioxide is of great concern due to its harmful effects on environment, human beings, fauna and flora. Fossil-fuel-fired power plants are one of the major sources of SO2 emissions. Typically the concentration of SO2 in the flue gases of these plants is in the range of 2000 to 20000 ppm. Flue gas desulfurisation is one of the widely practiced strategies to control SO2 emissions. Aqueous phase oxidation of sulfur dioxide catalysed by carbonaceous particles is an attractive alternative to the conventional processes for flue gas desulfurisation because, amongst other reasons, sulfuric acid, the product of aqueous phase oxidation, finds extensive application in industry. In the literature it has been reported that sulfuric acid affects the solubility of sulfur dioxide and that activated carbon catalyses aqueous phase oxidation. However there is hardly any report on the systematic evaluation of the mechanism of the heterogeneous aqueous phase oxidation of sulfur dioxide which takes into account among other factors, the effect of sulfuric acid on the solubility of SO2 (particularly, at low levels of SO2 and sulfuric acid concentrations). Therefore the objective of the present work is to evaluate systematically the aqueous phase oxidation of SO2 in ppm levels with activated carbon as catalyst in a three-phase agitated slurry reactor and to model rigorously the solubility of SO2 in ppm levels in dilute sulfuric acid solutions and to estimate the concerned parameters experimentally. Strong effect of dilute concentrations of sulfuric acid on the solubility of SO2 is analyzed in terms of the influence of the acid on the equilibrium concentrations of the ionic species (HSO3¯ and SO4¯2 formed from the hydrolysis of SO2 (aq) and the dissociation of H2SO4 respectively) in SO2 - dil. H2SO4 systems. The analysis leads to a general expression relating the partial pressure of SO2 in the gas phase to the concentration of total dissolved SO2 and the concentration of sulfuric acid in the solution. Simple equations are obtained from the general expression for the cases of zero and high concentrations of sulfuric acid in the system, which in turn lead to direct experimental determination of the parameters, Henry's law constant and the equilibrium constant of hydrolysis of SO2 (aq). The developed model predicts the present experimental data as well as the data reported in the literature very closely. The dissolution of SO2, the hydrolysis of SO2 (aq) and the dissociation of H2SO4 are found to be instantaneous. From the dependency of the parameters on temperature, the heat of dissolution of SO2 is determined to be -31.47 kJ mol"1 and the heat of hydrolysis to be 15.69 kJ mol"1. The overall heat of solubility of sulfur dioxide is therefore -15.78 kJ mol"1. Preliminary reaction experiments have clearly indicated that SO2 (aq) does not react and HSO3¯ is the only reactant for aqueous phase oxidation of sulfur dioxide catalysed by activated carbon. The non-reactant SO2 (aq) deactivates the oxidation reaction by competing with HSO3¯ for adsorption on the active sites of the catalyst particles. However the catalyst particles become saturated with SO2 (aq) beyond a certain value of its concentration (saturation limit), which depends on temperature. A mechanism is proposed based on these observations to develop a rate model. The rate model also takes into account the effect of the concentration of the product sulfuric acid on the solubility of sulfur dioxide. The model predicts first order in HSO3¯ , half order in dissolved oxygen and a linear deactivation effect of 5O2(ag). The oxidation reaction is evaluated experimentally at various levels of the operating variables such as temperature and the concentrations of sulfur dioxide and oxygen in the inlet gas. In all experiments a pseudo steady-state region is observed where the gas phase concentration of SO2 reaches a steady value but the concentrations of HSO3¯ and total S (VI) in the liquid phase continue to change. Pseudo steady-state considerations lead to the determination of the initial estimates of the parameters of the rate model namely, the rate constant and the deactivation constant. These parameters are estimated from the transient profiles of the product (sulfuric acid) by solving the model equations by Runge-Kutta method along with Marquardt's non-linear parameter estimation algorithm. The predictions of the model with the estimated parameters match very well with the experimentally observed concentration profiles of S(VI) and HSO3 in the liquid phase and SO2 in the gas phase. The deactivation constant in the saturation range is independent of temperature and is 0.27, which indicates that the intrinsic rate constant is about four times greater than the observed rate constant. From Arrhenius equation-type dependency of the parameters on temperature, the activation energy for the oxidation reaction is determined to be 93.55 kJ mol"1 and for deactivation to be 21.4 kJ mol"1. The low value of activation energy for deactivation suggests a weak dependency of the deactivation on temperature, which perhaps is due to the weak nature of the chemisorption of SO2 (aq) on carbon.
3

Pt and Au as electrocatalysts for various electrochemical reactions / Marthinus Hendrik Steyn

Steyn, Marthinus Hendrik January 2015 (has links)
In this study the focus was on the electrochemical techniques and aspects behind the establishment of the better catalyst (platinum or gold) for the sulphur dioxide oxidation reaction (SDOR). One of the primary issues regarding the SDOR is the catalyst material, thus the comparative investigation of the performance of platinum and gold in the SDOR, as found in this study. Ultimately, the SDOR could lead to an effective way of producing hydrogen gas, which is an excellent energy carrier. The electrochemical application of the oxygen reduction reaction (ORR) and ethanol oxidation reaction (EOR) is an integral part of the catalytic process of water electrolysis, and by using fuel cell technology, it becomes even more relevant to this study and can therefore be used as a control, guide and introduction to the techniques required for electrochemical investigation of catalyst effectiveness. Subsequently, the EOR as well as the ORR was used as introduction into the different electrochemical quantification and qualification techniques used in the electrochemical analyses of the SDOR. Considering the ORR, gold showed no viable activity in acidic medium, contrarily in alkaline medium, it showed good competition to platinum. Gold also lacked activity towards the EOR in acidic medium compared to platinum, with platinum the best catalyst in both acidic and alkaline media. Ultimately, platinum was established to be the material with better activity for the ORR with gold a good competitor in alkaline medium, and platinum the better catalyst for the EOR in both acidic and alkaline media. With the main focus of this study being the SDOR, gold proved to be the best catalyst in salt and gaseous forms of SO2 administration compared to platinum when the onset potential, maximum current density, Tafel slope and number of electrons transferred are taken into consideration. The onset potential was determined as 0.52 V vs. NHE for both platinum and gold using SO2 gas and 0.54 V and 0.5 V for gold and platinum respectively, using Na2SO3 salt. The maximum current density using gaseous SO2 for platinum at 0 RPM was 400 mA/cm2 with a Tafel slope of 891 mV/decade whereas gold had a maximum current density of 300 mA/cm2 and a Tafel slope of 378 mV/decade. Using Na2SO3 salt, the maximum current density of gold was 25 mA/cm2 with a Tafel slope of 59 mV/decade whereas platinum only achieved 18 mA/cm2 with a Tafel slope of 172 mV/decade. Concerning the number of electrons transferred, gold achieves a transfer of 2 while platinum only 1 for both SO2 gas and Na2SO3 salt. Taking all these summarised determinations into account, gold was established to be a very competitive catalyst material for the SDOR, compared to platinum. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2015
4

Pt and Au as electrocatalysts for various electrochemical reactions / Marthinus Hendrik Steyn

Steyn, Marthinus Hendrik January 2015 (has links)
In this study the focus was on the electrochemical techniques and aspects behind the establishment of the better catalyst (platinum or gold) for the sulphur dioxide oxidation reaction (SDOR). One of the primary issues regarding the SDOR is the catalyst material, thus the comparative investigation of the performance of platinum and gold in the SDOR, as found in this study. Ultimately, the SDOR could lead to an effective way of producing hydrogen gas, which is an excellent energy carrier. The electrochemical application of the oxygen reduction reaction (ORR) and ethanol oxidation reaction (EOR) is an integral part of the catalytic process of water electrolysis, and by using fuel cell technology, it becomes even more relevant to this study and can therefore be used as a control, guide and introduction to the techniques required for electrochemical investigation of catalyst effectiveness. Subsequently, the EOR as well as the ORR was used as introduction into the different electrochemical quantification and qualification techniques used in the electrochemical analyses of the SDOR. Considering the ORR, gold showed no viable activity in acidic medium, contrarily in alkaline medium, it showed good competition to platinum. Gold also lacked activity towards the EOR in acidic medium compared to platinum, with platinum the best catalyst in both acidic and alkaline media. Ultimately, platinum was established to be the material with better activity for the ORR with gold a good competitor in alkaline medium, and platinum the better catalyst for the EOR in both acidic and alkaline media. With the main focus of this study being the SDOR, gold proved to be the best catalyst in salt and gaseous forms of SO2 administration compared to platinum when the onset potential, maximum current density, Tafel slope and number of electrons transferred are taken into consideration. The onset potential was determined as 0.52 V vs. NHE for both platinum and gold using SO2 gas and 0.54 V and 0.5 V for gold and platinum respectively, using Na2SO3 salt. The maximum current density using gaseous SO2 for platinum at 0 RPM was 400 mA/cm2 with a Tafel slope of 891 mV/decade whereas gold had a maximum current density of 300 mA/cm2 and a Tafel slope of 378 mV/decade. Using Na2SO3 salt, the maximum current density of gold was 25 mA/cm2 with a Tafel slope of 59 mV/decade whereas platinum only achieved 18 mA/cm2 with a Tafel slope of 172 mV/decade. Concerning the number of electrons transferred, gold achieves a transfer of 2 while platinum only 1 for both SO2 gas and Na2SO3 salt. Taking all these summarised determinations into account, gold was established to be a very competitive catalyst material for the SDOR, compared to platinum. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2015
5

'n Vergelykende studie tussen Pt en Pd vir die elektro-oksidasie van waterige SO₂ asook ander model elektrochemiese reaksies / Adri Young

Young, Adri January 2014 (has links)
The pressure on clean and sustainable energy supplies is increasing. In this regard energy conversion by electrochemical processes plays a major role, for both fuel cell reactions and electrolysis reactions. The sulphur dioxide oxidation reaction (SOR) is a common reaction found in the Hybrid Sulphur Cycle (HyS) and the HyS is a way to produce large-scale hydrogen (H2). The problem with the use of the HyS and fuel cells is the cost involved as large amounts of Pt are required for effective operation. The aim of the study was to determine whether there was an alternative catalyst which was more efficient and cost-effective than Pt. The oxygen reduction reaction (ORR), the ethanol oxidation reaction (EOR) and SOR were studied by means of different electrochemical techniques (cyclovoltammetry (CV), linear polarization (LP) and rotating disk electrode (RDE)) on polycrystalline platinum (Pt) and palladium (Pd). The SRR and EOR are common reactions occurring at the cathode and anode, respectively, in fuel cells and these reactions have been investigated extensively. The reason for studying the reactions was as a preparation for the SOR. This study compared polycrystalline Pt and Pd for the different reactions, with the main focus on the SOR as Pd is considerably cheaper than Pt, and for the SOR polycrystalline Pd has by no means been investigated intensively. Polycrystalline Pt and Pd were compared by different electrochemical techniques and analyses. The Koutecky-Levich and Levich analyses were used to (i) calculate the number of e- involved in the relevant reaction, (ii) to determine whether the reaction was mass transfer controlled at high overpotentials and (iii) whether the reaction mechanism changed with potential. Next the kinetic current density ( k) was calculated from Koutecky-Levich analyses, which was further used for Tafel slope analyses. If it was not possible to carry out the analyses, the activation energy (Ea) was used to determine the electrocatalytic activity of the catalyst. The electrocatalytic activity was also determined by comparing onset potentials (Es), peak potentials (Ep) and limited/maximum current density ( b/ p) of each catalyst. This study was only a preliminary study for the SOR and therefore, further studies are certainly required. It seemed Pd shows better electrocatalytic activity than Pt for the SRR in an alkaline electrolyte because of similar Es, but Pd produced a higher cathodic current density. Pt showed a lower Es than Pd for the SRR in an acid electrolyte, but Pd delivered a higher cathodic current density. This, therefore, means that the SRR in an acid electrolyte is kinetically more favourable on Pd than on Pt. For the EOR better electrocatalytic activity was obtained with Pd than with Pt in an alkaline electrolyte due to higher current densities at lower potentials and Pd showed lower Ea values than Pt in the potential range normally used for fuel cells. Pd was inactive for EOR in an acid electrolyte, while a reaction occurred on Pt. A possible reason for this observation may be due to the H2 absorbing strongly on Pd thus blocking the active positions on the electrode surfaces, preventing further reaction. Pd showed higher electrocatalytic activity for the SOR due to lower Es and higher current densities at low potentials. From the RDE studies it was established that the SRR in an alkaline electrolyte on polycrystalline Pt and Pd was mass transfer controlled at low potentials (high overpotentials), but the SRR in an acid electrolyte was only mass transfer controlled on Pt. The SOR was not mass transfer controlled on polycrystalline Pt and Pd at high potentials (high overpotentials). These assumptions were confirmed by Levich analysis. Using Koutecky-Levich analysis, it was determined that the reaction mechanism on polycrystalline Pt and Pd changed with potential for SRR in an alkaline electrolyte and the SOR. For the SRR in an acid electrolyte the reaction mechanism remained constant with changes in potential on polycrystalline Pd, but the reaction mechanism on polycrystalline Pt changed with potential. These assumptions were confirmed by the number of e-, calculated using Koutecky-Levich analyses. Levich and Koutecky-Levich analyses were not performed for EOR as an increase in rotation speed did not produce an increase in current density. Tafel slope analyses were conducted by making use of overpotentials and k, where possible. As in the case of ethanol, it was not possible to execute Koutecky-Levich analyses and, therefore, it was not possible to perform Tafel slope analyses using k. Tafel slope analyses for the EOR was therefore performed with normal current densities at 0 rotations per minute (rpm). The reaction mechanisms on Pt and Pd for the SRR in alkaline and acidic electrolytes differed due to different Tafel slopes. Pt and Pd displayed similar Tafel slopes for the EOR in alkaline electrolyte, thus suggesting that the reaction mechanisms on Pt and Pd were the same. For the SOR it seemed that the reaction mechanism on Pt and Pd were similar because of similar Tafel slopes. This was only a preliminary and comparative study for polycrystalline Pt and Pd, and the reaction mechanism was not further studied by means of spectroscopic techniques. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014
6

'n Vergelykende studie tussen Pt en Pd vir die elektro-oksidasie van waterige SO₂ asook ander model elektrochemiese reaksies / Adri Young

Young, Adri January 2014 (has links)
The pressure on clean and sustainable energy supplies is increasing. In this regard energy conversion by electrochemical processes plays a major role, for both fuel cell reactions and electrolysis reactions. The sulphur dioxide oxidation reaction (SOR) is a common reaction found in the Hybrid Sulphur Cycle (HyS) and the HyS is a way to produce large-scale hydrogen (H2). The problem with the use of the HyS and fuel cells is the cost involved as large amounts of Pt are required for effective operation. The aim of the study was to determine whether there was an alternative catalyst which was more efficient and cost-effective than Pt. The oxygen reduction reaction (ORR), the ethanol oxidation reaction (EOR) and SOR were studied by means of different electrochemical techniques (cyclovoltammetry (CV), linear polarization (LP) and rotating disk electrode (RDE)) on polycrystalline platinum (Pt) and palladium (Pd). The SRR and EOR are common reactions occurring at the cathode and anode, respectively, in fuel cells and these reactions have been investigated extensively. The reason for studying the reactions was as a preparation for the SOR. This study compared polycrystalline Pt and Pd for the different reactions, with the main focus on the SOR as Pd is considerably cheaper than Pt, and for the SOR polycrystalline Pd has by no means been investigated intensively. Polycrystalline Pt and Pd were compared by different electrochemical techniques and analyses. The Koutecky-Levich and Levich analyses were used to (i) calculate the number of e- involved in the relevant reaction, (ii) to determine whether the reaction was mass transfer controlled at high overpotentials and (iii) whether the reaction mechanism changed with potential. Next the kinetic current density ( k) was calculated from Koutecky-Levich analyses, which was further used for Tafel slope analyses. If it was not possible to carry out the analyses, the activation energy (Ea) was used to determine the electrocatalytic activity of the catalyst. The electrocatalytic activity was also determined by comparing onset potentials (Es), peak potentials (Ep) and limited/maximum current density ( b/ p) of each catalyst. This study was only a preliminary study for the SOR and therefore, further studies are certainly required. It seemed Pd shows better electrocatalytic activity than Pt for the SRR in an alkaline electrolyte because of similar Es, but Pd produced a higher cathodic current density. Pt showed a lower Es than Pd for the SRR in an acid electrolyte, but Pd delivered a higher cathodic current density. This, therefore, means that the SRR in an acid electrolyte is kinetically more favourable on Pd than on Pt. For the EOR better electrocatalytic activity was obtained with Pd than with Pt in an alkaline electrolyte due to higher current densities at lower potentials and Pd showed lower Ea values than Pt in the potential range normally used for fuel cells. Pd was inactive for EOR in an acid electrolyte, while a reaction occurred on Pt. A possible reason for this observation may be due to the H2 absorbing strongly on Pd thus blocking the active positions on the electrode surfaces, preventing further reaction. Pd showed higher electrocatalytic activity for the SOR due to lower Es and higher current densities at low potentials. From the RDE studies it was established that the SRR in an alkaline electrolyte on polycrystalline Pt and Pd was mass transfer controlled at low potentials (high overpotentials), but the SRR in an acid electrolyte was only mass transfer controlled on Pt. The SOR was not mass transfer controlled on polycrystalline Pt and Pd at high potentials (high overpotentials). These assumptions were confirmed by Levich analysis. Using Koutecky-Levich analysis, it was determined that the reaction mechanism on polycrystalline Pt and Pd changed with potential for SRR in an alkaline electrolyte and the SOR. For the SRR in an acid electrolyte the reaction mechanism remained constant with changes in potential on polycrystalline Pd, but the reaction mechanism on polycrystalline Pt changed with potential. These assumptions were confirmed by the number of e-, calculated using Koutecky-Levich analyses. Levich and Koutecky-Levich analyses were not performed for EOR as an increase in rotation speed did not produce an increase in current density. Tafel slope analyses were conducted by making use of overpotentials and k, where possible. As in the case of ethanol, it was not possible to execute Koutecky-Levich analyses and, therefore, it was not possible to perform Tafel slope analyses using k. Tafel slope analyses for the EOR was therefore performed with normal current densities at 0 rotations per minute (rpm). The reaction mechanisms on Pt and Pd for the SRR in alkaline and acidic electrolytes differed due to different Tafel slopes. Pt and Pd displayed similar Tafel slopes for the EOR in alkaline electrolyte, thus suggesting that the reaction mechanisms on Pt and Pd were the same. For the SOR it seemed that the reaction mechanism on Pt and Pd were similar because of similar Tafel slopes. This was only a preliminary and comparative study for polycrystalline Pt and Pd, and the reaction mechanism was not further studied by means of spectroscopic techniques. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014

Page generated in 0.0977 seconds