• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biogeochemical constraints on the growth and nutrition of the seagrass Halophila ovalis in the Swan River Estuary

Kilminster, Kieryn Lee January 2006 (has links)
[Truncated abstract] Biogeochemical processes in seagrass sediments influence growth and nutrition of seagrasses. This thesis investigates the below-ground interactions between biotic and abiotic factors that influence seagrass nutrition and growth, with focus on a small species of seagrass, Halophila ovalis (R. Br.) Hook ƒ., from the Swan River Estuary, Western Australia. Seagrass showed significantly lower growth and an increase in leaf nitrogen and phosphorus concentrations with increased organic matter loading. With maximal light reduction, lower growth rates and average leaf weights were observed, and leaf nitrogen and phosphorus concentrations were higher. Light reduction was also shown to increase bioavailability of inorganic nutrients within porewater of seagrass sediment . . . Sulphide was hypothesised to have an inhibitory effect on nutrient uptake of Halophila ovalis. Below-ground sulphide inhibits the photosynthetic efficiency of photosystem II at sulphide concentrations greater than 1 mM. Sulphide exposure enhanced phosphate uptake, with no significant effect on ammonium uptake of H. ovalis. This thesis demonstrates that biogeochemical processes both constrain the potential growth of seagrasses and influence the nutrient status of seagrass tissue. Consideration of the influence of sulphide stress on seagrasses is likely to be particularly important for anthropogenically influenced aquatic systems, where inputs of organic matter are enriched relative to pristine ecosystems. A better understanding of biogeochemical processes will allow researchers to predict how future changes in sediment chemistry will influence seagrass meadows.

Page generated in 0.0537 seconds