• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 16
  • 14
  • 12
  • 11
  • 11
  • 10
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EUV & X-ray spectroscopic diagnostics of the solar corona

O'Dwyer, Brendan January 2012 (has links)
No description available.
2

Numerical simulations of footpoint driven coronal heating

O'Hara, Jennifer January 2016 (has links)
Magnetic field permeates the solar atmosphere and plays a crucial role in the dynamics, energetics and structures observed. In particular, magnetic flux tubes provide the structure for coronal loops that extend from the solar surface into the corona. In this thesis, we present 3D numerical simulations examining the heating produced by reconnection between flux tubes driven by rotational footpoint motions. The basic model consists of two, initially aligned, flux tubes that are forced to interact by rotational driving velocities on the flux concentrations on the boundaries. A single, twisted current layer is created in the centre of the domain and strong, localised heating is produced. We extend this model by altering the number, distribution and strength of the sources, while maintaining the same total magnetic flux on the boundaries. The dynamical evolution and the resultant magnitude, distribution and timing of the heating events are examined for the different flux distributions. In all cases, the magnetic field is stressed by the boundary motions and a current grows within the domain. A comparison of cases with two and four sources shows that there are more locations of current concentrations, but with reduced maximum current density values, for the four source case. This produces weaker reconnection and less efficient heating. In addition, for the case with two sources, we also consider the effect of splitting up one of the sources into many smaller flux fragments. The evolution and heating are shown to be very similar to the two source case. The impact of increasing the strength of the background field between the flux tubes is also examined and we find that it delays and increases the strength of the heating, although by how much depends on the distribution of the flux sources.
3

Investigations of current build up in topologically simple magnetic fields

Bocquet, Francois-Xavier January 2005 (has links)
The solar corona is a highly conductive plasma which is dominated by the coronal magnetic field. Observations show that important solar phenomena like flares or the heating of the corona are driven by magnetic energy, probably through the process of magnetic reconnection. The release of magnetic energy by reconnection requires that non-ideal processes take place in contradiction to the high conductivity of the corona. One possibility to overcome this problem is to generate strong electrical currents in strongly localised regions. In this thesis we investigate how such localised currents can be formed by slow ideal evolution of topologically simple magnetic fields. To this purpose numerical simulations are carried out using an Eulerian and a Lagrangian MHD relaxation code. We first use a simple example (twisting of a uniform field) to investigate the advantages and disadvantages of both codes and to discover possible limitations for their application. We show that for the problems addressed in this thesis the Lagrangian code is more suited because it can resolve the localised current densities much better than the Eulerian code. We then focus in particular on magnetic fields containing a so-called Hyperbolic Flux Tube (HPT). A recently proposed analytical theory predicts that HFT's are sites where under certain conditions strong current build-up can be expected. We use our code to carry out a systematic parametric study of the dependence of current growth for a typical HFT configuration. We have also developed a completely new version of the analytical theory which is directly based on the set-up of our numerical simulations. We find that the simulations agree with the analytical prediction in a quantitative way but that the analytical theory underestimates the current growth quite substantially, probably by not taking into account the non-linear character of the full problem.
4

Theory and observations of the magnetic field in the solar corona

Carcedo, Laura January 2005 (has links)
Although the solar corona is one of the most studied areas in solar physics, its activity, such as flares, prominence eruptions and CMEs, is far from understood. Since the solar corona is a low-ß plasma, its structure and dynamics are driven by the magnetic field. The aim of this PhD thesis to study the magnetic field in the solar corona. Unfortunately, high quality direct measurements of the coronal magnetic field are not available and theoretical extrapolation using the observed photospheric magnetic field is required. The thesis is mainly divided in two parts. The first part deals with the comparison between theoretical models of magnetic fields and observed structures in the corona. For any theoretical model, a quantitative method to fit magnetic field lines to observed coronal loops is introduced. This method provides a quantity C that measures how closely a theoretical model can reproduce the observed coronal structures. Using linear force-free field extrapolation, the above field line fitting method is used to study the evolution of an active region. The method is also illustrated when the theoretical magnetic field depends on more than one parameter. The second part of the thesis focuses on the linear force-free field assumption using two different geometric configurations. Firstly a vertical rigid magnetic flux tube is considered. The analytical expression of the magnetic field is obtained as an expansion in terms of Bessel functions. The main properties of this system are discussed and compared with two cylindrically symmetric twist profiles. For the second system, the photosphere is assumed to be an infinite plane. Using translational geometry, the analytical expression of the linear force-free magnetic field that matches a prescribed line of sight magnetic field component is obtained. This solution is compared with the non-linear solution obtained by Roumeliotis (1993).
5

Topological structure of the magnetic solar corona

Maclean, Rhona Claire January 2007 (has links)
The solar corona is a highly complex and active plasma environment, containing many exotic phenomena such as solar flares, coronal mass ejections, prominences, coronal loops, and bright points. The fundamental element giving coherence to all this apparent diversity is the strong coronal magnetic field, the dominant force shaping the plasma there. In this thesis, I model the 3D magnetic fields of various coronal features using the techniques of magnetic charge topology (MCT) in a potential field. Often the real coronal field has departures from its potential state, but these are so small that the potential field method is accurate enough to pick out the essential information about the structure and evolution of the magnetic field. First I perform a topological analysis of the magnetic breakout model for an eruptive solar flare. Breakout is represented by a topological bifurcation that allows initially enclosed flux from the newly emerging region in my MCT model of a delta sunspot to reconnect out to large distances. I produce bifurcation diagrams showing how this behaviour can be caused by changing the strength or position of the emerging flux source, or the force-free parameter α. I also apply MCT techniques to observational data of a coronal bright point, and compare the results to 3D numerical MHD simulations of the effects of rotating the sources that underlie the bright point. The separatrix surfaces that surround each rotating source are found to correspond to locations of high parallel electric field in the simulations, which is a signature of magnetic reconnection. The large-scale topological structure of the magnetic field is robust to changes in the method of deriving point magnetic sources from the magnetogram. Next, I use a Green’s function expression for the magnetic field to relax the standard topological assumption of a flat photosphere and extend the concept of MCT into a spherical geometry, enabling it to be applied to the entire global coronal magnetic field. I perform a comprehensive study of quadrupolar topologies in this new geometry, producing several detailed bifurcation diagrams. These results are compared to the equivalent study for a flat photosphere. A new topological state is found on the sphere which has no flat photosphere analogue; it is named the dual intersecting state because of its twin separators joining a pair of magnetic null points. The new spherical techniques are then applied to develop a simple six-source topological model of global magnetic field reversal during the solar cycle. The evolution of the large-scale global magnetic field is modelled through one complete eleven-year cycle, beginning at solar minimum. Several distinct topological stages are exhibited: active region flux connecting across the equator to produce transequatorial loops; the dominance of first the leading and then the following polarities of the active regions; the magnetic isolation of the poles; the reversal of the polar field; the new polar field connecting back to the active regions; the polar flux regaining its dominance; and the disappearance of the transequatorial loops.
6

A Zone of Preferential Ion Heating Extends Tens of Solar Radii from the Sun

Kasper, J. C., Klein, K. G., Weber, T., Maksimovic, M., Zaslavsky, A., Bale, S. D., Maruca, B. A., Stevens, M. L., Case, A. W. 07 November 2017 (has links)
The extreme temperatures and nonthermal nature of the solar corona and solar wind arise from an unidentified physical mechanism that preferentially heats certain ion species relative to others. Spectroscopic indicators of unequal temperatures commence within a fraction of a solar radius above the surface of the Sun, but the outer reach of this mechanism has yet to be determined. Here we present an empirical procedure for combining interplanetary solar wind measurements and a modeled energy equation including Coulomb relaxation to solve for the typical outer boundary of this zone of preferential heating. Applied to two decades of observations by the Wind spacecraft, our results are consistent with preferential heating being active in a zone extending from the transition region in the lower corona to an outer boundary 20-40 solar radii from the Sun, producing a steady-state super-massproportional a-to-proton temperature ratio of 5.2-5.3. Preferential ion heating continues far beyond the transition region and is important for the evolution of both the outer corona and the solar wind. The outer boundary of this zone is well below the orbits of spacecraft at 1 au and even closer missions such as Helios and MESSENGER, meaning it is likely that no existing mission has directly observed intense preferential heating, just residual signatures. We predict that the Parker Solar Probe will be the first spacecraft with a perihelion sufficiently close to the Sun to pass through the outer boundary, enter the zone of preferential heating, and directly observe the physical mechanism in action.
7

On the topology of global coronal magnetic fields

Edwards, Sarah J. January 2014 (has links)
This thesis considers the magnetic topology of the global solar corona. To understand the magnetic topology we use the magnetic skeleton which provides us with a robust description of the magnetic field. To do this we use a Potential Field model extrapolated from observations of the photospheric magnetic field. Various measurements of the photospheric magnetic field are used from both ground-based observatories (Kitt-Peak and SOLIS) and space-based observatories (MDI and HMI). Using the magnetic skeleton we characterise particular topological structures and discuss their variations throughout the solar cycle. We find that, from the topology, there are two types of solar minimum magnetic field and one type of solar maximum. The global structure of the coronal magnetic field depends on the relative strengths of the polar fields and the low-latitude fields. During a strong solar dipole minimum the heliospheric current sheet sits near the equator and the heliospheric current sheet curtains enclose a large amount of mixed polarity field which is associated with many low-altitude null points. In a weak solar dipole minimum the heliospheric current sheet becomes warped and large scale topological features can form that are associated with weak magnetic field regions. At solar maximum the heliospheric current sheet is highly warped and there are more null points at high altitudes than at solar minimum. The number of null points in a magnetic field can be seen as a measure of the complexity of the field so this is investigated. We find that the number of nulls above 10Mm falls off with height as a power law whose slope depends on the phase of the solar cycle. We compare the magnetic topology we found at particular times with observations of the Doppler velocity and intensity around particular active regions to see if it is possible to determine whether plasma upflows at the edge of active regions are linked to open field regions.
8

Modelling chromospheric evaporation in response to coronal heating

Johnston, Craig David January 2018 (has links)
This thesis presents a new computationally efficient method for modelling the response of the solar corona to the release of energy. During impulsive heating events, the coronal temperature increases which leads to a downward heat flux into the transition region (TR). The plasma is unable to radiate this excess conductive heating and so the gas pressure increases locally. The resulting pressure gradient drives an upflow of dense material, creating an increase in the coronal density. This density increase is often called chromospheric evaporation. A process which is highly sensitive to the TR resolution in numerical simulations. If the resolution is not adequate, then the downward heat flux jumps over the TR and deposits the heat in the chromosphere, where it is radiated away. The outcome is that with an under-resolved TR, major errors occur in simulating the coronal density evolution. We address this problem by treating the lower transition region as a discontinuity that responds to changing coronal conditions through the imposition of a jump condition that is derived from an integrated form of energy conservation. In this thesis, it is shown that this method permits fast and accurate numerical solutions in both one-dimensional and multi-dimensional simulations. By modelling the TR with this appropriate jump condition, we remove the influence of poor numerical resolution and obtain the correct evaporative response to coronal heating, even when using resolutions that are compatible with multi-dimensional magnetohydrodynamic simulations.
9

The period ratio P₁/2P₂ in coronal waves

Macnamara, Cicely K. January 2011 (has links)
Increasing observational evidence of wave modes brings us to a closer understanding of the solar corona. Coronal seismology allows us to combine wave observations and theory to determine otherwise unknown parameters. The period ratio, P₁/2P₂, between the period P₁ of the fundamental mode and the period P₂ of its first overtone is one such tool of coronal seismology and its departure from unity provides information about the structure of the corona. In this thesis we consider the period ratio P₁/2P₂ of coronal loops from a theoretical standpoint. Previous theory and observations indicate that the period ratio is likely to be less than unity for oscillations of coronal loops. We consider the role of damping and density structuring on the period ratio. In Chapter 2 we consider analytically the one-dimensional wave equation with the inclusion of a generic damping term for both uniform and non-uniform media. Results suggest that the period ratio is dominated by longitudinal structuring rather than damping. In Chapter 3 we consider analytically the effects of thermal conduction and compressive viscosity on the period ratio for a longitudinally propagating sound wave. We find that damping by either thermal conduction or compressive viscosity typically has a small effect on the period ratio. For coronal values of thermal conduction the effect on the period ratio is negligible. For compressive viscosity the effect on the period ratio may become important for some short hot loops. In Chapter 4 we extend the analysis of Chapter 3 to include radiative cooling and find that it too has a negligible effect on the period ratio for typical coronal values. As an extension to the investigation, damping rates are considered for thermal conduction, compressive viscosity and radiative cooling. The damping time is found to be optimal for each mechanism in a different temperature range, namely below 1 MK for radiative cooling, 2 − 6 MK for thermal conduction and above 6 MK for compressive viscosity. In Chapter 5 we consider analytically the period ratio for the fast kink, sausage and n = N modes of a magnetic slab, discussing both an Epstein density profile and a simple step function profile. We find that transverse density structuring in the form of an Epstein profile or a step function profile may contribute to the shift of the period ratio for long thin slab-like structures. The similarity in the behaviour of the period ratio for both profiles means either can be used as a robust model. We consider also other profiles numerically for the kink mode, which are found to be either slab-like or Epstein-like suggesting again that it is not necessary to distinguish the nature of the density profile when considering the period ratio.
10

MHD mode conversion of fast and slow magnetoacoustic waves in the solar corona

McDougall-Bagnall, A. M. Dee January 2010 (has links)
There are three main wave types present in the Sun’s atmosphere: Alfvén waves and fast and slow magnetoacoustic waves. Alfvén waves are purely magnetic and would not exist if it was not for the Sun’s magnetic field. The fast and slow magnetoacoustic waves are so named due to their relative phase speeds. As the magnetic field tends to zero, the slow wave goes to zero as the fast wave becomes the sound wave. When a resonance occurs energy may be transferred between the different modes, causing one to increase in amplitude whilst the other decreases. This is known as mode conversion. Mode conversion of fast and slow magnetoacoustic waves takes place when the characteristic wave speeds, the sound and Alfvén speeds, are equal. This occurs in regions where the ratio of the gas pressure to the magnetic pressure, known as the plasma β, is approximately unity. In this thesis we investigate the conversion of fast and slow magnetoacoustic waves as they propagate from low- to high-β plasma. This investigation uses a combination of analytical and numerical techniques to gain a full understanding of the process. The MacCormack finite-difference method is used to model a wave as it undergoes mode conversion. Complementing this analytical techniques are employed to find the wave behaviour at, and distant from, the mode-conversion region. These methods are described in Chapter 2. The simple, one-dimensional model of an isothermal atmosphere permeated by a uniform magnetic field is studied in Chapter 3. Gravitational acceleration is included to ensure that mode conversion takes place. Driving a slow magnetoacoustic wave on the upper boundary conversion takes place as the wave passes from low- to high-β plasma. This is expanded upon in Chapter 4 where the effects of a non-isothermal temperature profile are examined. A tanh profile is selected to mimic the steep temperature gradient found in the transition region. In Chapter 5 the complexity is increased by allowing for a two-dimensional model. For this purpose we choose a radially-expanding magnetic field which is representative of a coronal hole. In this instance the slow magnetoacoustic wave is driven upwards from the surface, again travelling from low to high β. Finally, in Chapter 6 we investigate mode conversion near a two-dimensional, magnetic null point. At the null the plasma β becomes infinitely large and a wave propagating towards the null point will experience mode conversion. The methods used allow conversion of fast and slow waves to be described in the various model atmospheres. The amount of transmission and conversion are calculated and matched across the mode-conversion layer giving a full description of the wave behaviour.

Page generated in 0.0607 seconds