• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The observed properties of the intermediate-degree gravity modes and their relevance to the solar neutrino paradox.

Rabaey, Gregory Francis. January 1989 (has links)
Intermediate-degree g-modes (those with angular order ℓ ≈ 30) were first observed in the late 1970's by Hill and Caudell (1979). However, it wasn't until 1986 that a preliminary survey was made of the 1979 differential radius observations (see Bos 1982) and a set of 4 multiplets exhibiting mode-locking was classified by Hill (1986). These multiplets with angular order ℓ ≈ 30 and eigenfrequencies of ≈350 μHz were used as a starting point for the comprehensive analysis discussed in this work. This comprehensive study culminated in the classification of a set of 20 intermediate-degree g-mode multiplets containing over 600 normal modes of oscillation. Each of these multiplets was found to contain mode-coupled sections. Of more importance, however, are the internal properties of the Sun that can be inferred from this large body of classified modes. In this work two significant consequences will be discussed. Because these modes of oscillation are localized within the inner 50% of the Sun by radius and because of their large temperature eigenfunctions implied by the observed phase-locking, these modes of oscillation provide a modification of the effective temperature profile defined for a given process in the Sun. One of these processes is the ⁸B neutrino production. The second consequence of these observations is a predicted periodic modulation of the neutrino production rates. The existence of a large set of mode-coupled gravity modes will lead to a low-frequency modulation of neutrino production rates which may account for the observed periodicity in the ⁸B neutrino production (see Haubold and Gerth 1985). The prediction of this periodicity in the neutrino production rates is unique among all the competing theories that resolve the solar neutrino paradox and is testable by the new generation of solar neutrino detectors.
2

OBSERVATIONS OF INDIVIDUAL SOLAR EIGENMODES: THEIR PROPERTIES AND IMPLICATIONS.

BOS, RANDALL JAY. January 1982 (has links)
This work analyzes data taken in 1979 using a modification of the solar detector at SCLERA (Santa Catalina Laboratory for Experimental Relativity) designed to enhance spatial properties of the previously observed solar oscillations. Unlike previous solar observations taken at SCLERA, where the data consisted of single solar diameter measurements, the 1979 data consisted of six recorded limb profiles. This has important ramifications for the amount of signal present in the data which was generated by the terrestrial atmosphere, for the origin of the observed solar oscillations in fluctuations of the solar limb darkening function, and, most importantly, for the spatial symmetry properties of the observed solar eigenfunctions. The data consisted of 18 days of observations averaging ten hours per day and covering a total of 41 days. A linked Fourier transform of all 18 days was done for signal generated from each limb profile, and combinations of these six Fourier transforms made to increase sensitivity to symmetric or antisymmetric properties of the observed solar eigenmodes. The following results were found: 1. The observed oscillations are manifestations of fluctuations in the solar limb darkening function. 2. Terrestrial atmospheric contributions to the observed signal are negligible; thus, the sun constitutes the only possible source of the signal. 3. Given a resolution element of 1/(41 days) or 0.28 μHz, the solar oscillations observed represent individual solar eigenstates. 4. The spatial properties of the eigenstates are consistent with their interpretation in terms of spherical harmonics defined with respect to the observed solar rotational axis. 5. The eigenstates are temporally coherent for > 2 days and, in selected samples, for > 41 days. 6. The observed spacing of groups of eigenmodes is shown to be indicative of solar rotational effects; this spacing implies that the core of the sun is rotating approximately six times faster than the observed surface rotational velocity.
3

Métrologie de la spectrophotométrie solaire absolue: principes, mise en oeuvre et résultats ;Instrument SOLSPEC à bord de la station spatiale internationale

Bolsee, David 08 May 2012 (has links)
Le Soleil est une étoile variable dont l’éclairement présente un large spectre de périodicités (de quelques minutes à plusieurs décennies). L’amplitude de ces variabilités présente une forte dépendance en longueur d’onde. La mesure précise de l’éclairement spectral hors atmosphère et de cette variabilité selon une échelle radiométrique absolue constituent une entrée fondamentale pour les domaines de recherche suivants :<p>- En physique solaire, ces mesures permettent de valider les modèles étudiant la composition de l’atmosphère solaire, les processus physiques internes et leur variabilité.<p>- La photochimie atmosphérique terrestre et les modèles climatiques. La composition, la structure thermique et la dynamique de l’atmosphère terrestre sont dépendantes du flux solaire incident, de sa distribution en longueur d’onde et de sa variabilité. Les mesures sont requises pour une validation des modèles de transfert radiatif et climatiques.<p>La nécessité d’une mesure continue dans le temps et hors atmosphère s’impose car chaque cycle solaire possède ses propres caractéristiques. Ces mesures sont réalisées depuis plus de 30 ans par des spectroradiomètres adaptés à l’environnement spatial. L’instrument SOLSPEC (SOLar SPECtrum) a apporté une contribution majeure à ces mesures.<p>Le travail présenté dans ce manuscrit est associé à la sélection de SOLSPEC pour une mission à bord de la Station Spatiale Internationale (ISS). Les objectifs ont consisté à adapter l’instrument pour une mission à long terme (2008-2016), à étendre la plage spectrale couverte par SOLSPEC et à réduire l’incertitude de mesures. Il est structuré en deux parties :<p>- La remise à niveau de l’instrumentation et son étalonnage radiométrique.<p>- Le traitement des données pour les premières mesures en orbite.<p>L’instrument a été modifié pour satisfaire de nouvelles exigences de dimensions et de masse. De nouveaux sous-systèmes optiques (unité interne d’étalonnage, pointeur solaire) ont été développés pour permettre la détection et la correction de toute dérive angulaire ou de réponse absolue de manière autonome. La plage spectrale de fonctionnement a été étendue entre 166 et 3088 nm. Une caractérisation radiométrique approfondie de SOLSPEC a été effectuée. L’étalonnage absolu a été réalisé à partir de l’étalon primaire en éclairement spectral (rayonnement du corps noir) du PTB (Physikalisch-Technische Bundesanstalt). Une estimation des incertitudes standard utilisant le formalisme mathématique appliqué en métrologie a été développée. Les résultats donnent une incertitude réduite entre 2 % à 4 % pour la plage 166-370 nm, inférieure à 2 % entre 370 et 2350 nm, comprise entre 2 et 5 % pour l’intervalle 2350-2580 nm et de 5 à 10 % entre 2580 et 2920 nm. Une valeur inférieure à 1 % est atteinte entre 500 et 1900 nm. Les mesures consécutives à la mise en orbite de SOLSPEC ont confirmé le maintien des performances radiométriques. Le spectre solaire hors atmosphère a été déterminé et comparé aux résultats antérieurs et actuels des missions respectives SOLSPEC ATLAS et SORCE. Il correspond à l’activité solaire du début de la mission SOLAR (mi-2008).<p><p>The Sun is a variable star. Its irradiance presents a wide range of periodicity varying from minutes to decades. The amplitude of this variability is strongly wavelength dependent. The accurate determination of the solar spectral irradiance above the atmosphere in absolute radiometric scale and the study of its variability are main issues for the following researches:<p>- In solar physics, these measurements are required for the validation of the models studying the composition of the solar atmosphere, the internal physical processes and their variability.<p>- For the photochemistry of the Earth’s atmosphere and the climate modeling. The composition, the thermal structure and the dynamics of the atmosphere are dependant on the incoming solar flux, its spectral distribution and variability. The measurements are required for the validation of radiative transfer and climate models.<p>As each solar cycle presents a different behavior, there was a need for continuous measurements above the atmosphere. Such measurements were performed since more than 30 years by means of space qualified spectroradiometers. The SOLSPEC (SOLar SPECtrum) instrument brought a major contribution in this respect. <p>The present work is devoted to the SOLSPEC instrument that was selected for a new mission on board the International Space Station (ISS). The objectives were to refurbish the instrument and to adapt it for a long term mission (2008-2016), to extend the wavelength coverage and to reduce the uncertainties on the measurements. This work is developed in two parts:<p>- The refurbishment and the radiometric characterization of the instrument.<p>- The data processing of the first results after the launch.<p>The instrument was modified in order to fulfill new requirements of dimensions and mass. Different optical sub-systems (internal lamp unit, passive solar sensor) were developed in order to obtain on board capabilities for the detection and the correction of any trend in the absolute response. The spectral range was extended to 166 - 3088 nm. A full radiometric characterization of SOLSPEC has been carried out and is presented in this work. The absolute calibration was performed using the primary standard of spectral irradiance (black-body radiation) of the PTB (Physikalisch-Technische Bundesanstalt). The evaluation of the standard uncertainties is presented using the mathematical methodology applied in metrology. The results provide an uncertainty limited to 2 % - 4 % between 166 and 370 nm, below 2 % from 370 to 2350 nm, between 2 and 5 % for the spectral range 2350 - 2580 nm and 5 % to 10 % between 2580 and 2900 nm. The uncertainty is below 1 % between 500 and 1900 nm. The stability of the radiometric performances was demonstrated from the analysis of the first measurements after the launch, at the beginning of the mission. The solar spectrum above the atmosphere was determined and compared to results obtained from the previous SOLSPEC ATLAS and ongoing SORCE missions. This spectrum corresponds to the solar activity at mid-2008.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Page generated in 0.3047 seconds