• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Discovery of Paleotsunami Deposits along Eastern Sunda Arc: Potential for Megathrust Earthquakes in Bali

Sulaeman, Hanif Ibadurrahman 01 December 2018 (has links)
Several laterally extensive candidate tsunami deposits are preserved along coastlines facing the eastern Java Trench, indicating it has experienced mega-thrust earthquakes in the past. We investigated 37 coastal sites in Bali, Lombok, Sumba and Timor islands, many of which preserve course sand and pebble layers that overlie sharp basal contacts with scour marks into the mud, fine upward in grain size, and have bimodal grain size distributions. Other unique features are the common occurrence of marine fossils and concentrations of heavy minerals. The occurrence of these high-energy deposits interlayered with clay-rich units indicates the coarse clastics are anomalous because they were deposited in what is normally a very low-energy depositional environment. The lateral extent and paucity of thin, coarse clastic layers with marine organisms are inconsistent with local stream flood event, and the proximity to the equator of the sites diminishes the possibility of marine flood events from cyclones. The sparse, but consistent, the occurrence of at least two candidate tsunami deposits at depths of 1 and 2 meters over 950 km along the strike of the Java Trench may reveal that mega-thrust earthquakes have occurred there and generated giant tsunamis in the recent past.Five widely scattered imbricated boulder deposits are also found on Bali, Lombok, and Sumba. The boulders consist of slabs of hardpan up to 2.5 m in length and 80 cm thick that was torn from a near-shore seabed and stacked on top of one another. Some of the boulders were carried over the erosional coastal bank and deposited up to 100 meters inland. Comparisons with imbricated boulder ridges formed during the 1994 tsunami in east Java indicate that these deposits are from one or multiple tsunamis sourced by the Java Trench.Experiments in effective ways to communicate and implement tsunami disaster mitigation strategies have led us to train local communities about the 20-20-20 rule. If coastal communities experience more than 20 seconds of shaking from an earthquake, even if it is not intense, they should evacuate the coast. The time delay between the earthquake and arrival of tsunami waves is around 20 minutes, which is the time window for evacuation. Some tsunami waves may be as high as 20 meters, which is the target elevation for evacuation. Adopting the 20-20-20 rule could save thousands of lives throughout the region, especially in Bali where nearly 1 million people inhabit likely tsunami inundation zones.
2

Discovery of Paleotsunami Deposits along Eastern Sunda Arc: Potential for Megathrust Earthquakes in Bali

Sulaeman, Hanif Ibadurrahman 01 December 2018 (has links)
Several laterally extensive candidate tsunami deposits are preserved along coastlines facing the eastern Java Trench, indicating it has experienced mega-thrust earthquakes in the past. We investigated 37 coastal sites in Bali, Lombok, Sumba and Timor islands, many of which preserve course sand and pebble layers that overlie sharp basal contacts with scour marks into the mud, fine upward in grain size, and have bimodal grain size distributions. Other unique features are the common occurrence of marine fossils and concentrations of heavy minerals. The occurrence of these high-energy deposits interlayered with clay-rich units indicates the coarse clastics are anomalous because they were deposited in what is normally a very low-energy depositional environment. The lateral extent and paucity of thin, coarse clastic layers with marine organisms are inconsistent with local stream flood event, and the proximity to the equator of the sites diminishes the possibility of marine flood events from cyclones. The sparse, but consistent, the occurrence of at least two candidate tsunami deposits at depths of 1 and 2 meters over 950 km along the strike of the Java Trench may reveal that mega-thrust earthquakes have occurred there and generated giant tsunamis in the recent past. Five widely scattered imbricated boulder deposits are also found on Bali, Lombok, and Sumba. The boulders consist of slabs of hardpan up to 2.5 m in length and 80 cm thick that was torn from a near-shore seabed and stacked on top of one another. Some of the boulders were carried over the erosional coastal bank and deposited up to 100 meters inland. Comparisons with imbricated boulder ridges formed during the 1994 tsunami in east Java indicate that these deposits are from one or multiple tsunamis sourced by the Java Trench. Experiments in effective ways to communicate and implement tsunami disaster mitigation strategies have led us to train local communities about the 20-20-20 rule. If coastal communities experience more than 20 seconds of shaking from an earthquake, even if it is not intense, they should evacuate the coast. The time delay between the earthquake and arrival of tsunami waves is around 20 minutes, which is the time window for evacuation. Some tsunami waves may be as high as 20 meters, which is the target elevation for evacuation. Adopting the 20-20-20 rule could save thousands of lives throughout the region, especially in Bali where nearly 1 million people inhabit likely tsunami inundation zones.
3

GPS Velocity Field In The Transition From Subduction To Collision Of The Eastern Sunda And Banda Arcs, Indonesia

Nugroho, Hendro 06 July 2005 (has links) (PDF)
Campaign GPS measurements during 2001-2003 in the transition between subduction and collision of the Banda arc reveal how strain is partitioned away from the trench and distributed to other parts of the arc-trench system. Genrich, et. al. (1996) conducted a GPS campaign (1992-1994) throughout the Eastern Sunda and Banda arcs that demonstrated partial accretion of the arc to the Australian plate. We reoccupied many of the sites from this earlier study and 7 additional stations, 3 of which are new benchmarks. Our study shortened many baselines and extended the observation epoch to ten years for many key stations. The resulting GPS velocity field for the active Banda arc-continent collision reveals: 1) several mostly rigid crustal blocks exist in the transition from subduction to collision, 2) relative to an Asian reference frame, most of these blocks move in the same direction as the Australian lower plate, but at different rates, 3) block boundaries may exist between the islands of Lombok and Komodo, Flores and Sumba, Savu and West Timor, and between Timor and Darwin, 4) the Timor Trough may account for at least 20 mm/yr of motion between Timor and Darwin, 5) a major transverse fault off the coast of West Timor separates the Savu/Flores/Sumba block from the Timor/Wetar Block and may account for variations in movement in Rote, 6) the Flores thrust moves the eastern Sunda arc north relative to Asia by decreasing amounts to the west, 7) the back-arc Wetar Thrust system takes up the majority of plate convergence between Australia and Asia, and 8) fault boundaries are not found between many blocks, such as various islands of the Sunda arc and forearc with different amounts of motion.
4

Magma-Crust Interaction at Subduction Zone Volcanoes

Jolis, Ester M. January 2013 (has links)
The focus of this work is magma-crust interaction processes and associated crustal volatile release in subduction zone volcanoes, drawing on rock, mineral, and gas geochemistry as well as experimental petrology. Understanding the multitude of differentiation processes that modify an original magma during ascent to the surface is vital to unravel the contributions of the various sources that contribute to the final magmas erupted at volcanoes. In particular, magma-crust interaction (MCI) processes have been investigated at a variety of scales, from a local scale in the Vesuvius, Merapi, and Kelut studies, to a regional scale, in the Java to Bali segment of the Sunda Arc.  The role of crustal influences is still not well constrained in subduction systems, particulary in terms of the compositional impact of direct magma crust interplay. To address this shortcoming, we studied marble and calc-silicate (skarn) xenoliths, and used high resolution short timescale experimental petrology at Vesuvius volcano. The marbles and calc-silicates help to identify different mechanisms of magma-carbonate and magma-xenolith interaction, and the subsequent effects of volatile release on potential eruptive behaviour, while sequential short-duration experiments simulate the actual processes of carbonate assimilation employing natural materials and controlled magmatic conditions. The experiments highlight the efficiency of carbonate assimilation and associated carbonate-derived CO2 liberated over short timescales. The findings at Merapi and Kelut demonstrate a complex magmatic plumbing system underneath these volcanoes with magma residing at different depths, spanning from the mantle-crust boundary to the upper crust. The erupted products and volcanic gas emissions enable us to shed light on MCI-processes and associated volatile release in these systems. The knowledge gained from studying individual volcanoes (e.g., Merapi and Kelut) is then tested on a regional scale and applied to the entire Java and Bali arc segment. An attempt is presented to distinguish the extent of source versus crustal influences and establish a quantitative model of late stage crustal influence in this arc segment. This thesis therefore hopes to contribute to our knowledge of magma genesis and magma-crust interaction (MCI) processes that likely operate in subduction zone systems worldwide.

Page generated in 0.0574 seconds