• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrochemical Behavior of Carbon Nanostructured Electrodes: Graphene, Carbon Nanotubes, and Nanocrystalline Diamond

Raut, Akshay Sanjay January 2014 (has links)
<p>The primary goals of this research were to investigate the electrochemical behavior of carbon nanostructures of varying morphology, identify morphological characteristics that improve electrochemical capacitance for applications in energy storage and neural stimulation, and engineer and characterize a boron-­doped diamond (BDD) electrode based electrochemical system for disinfection of human liquid waste. </p><p>Carbon nanostructures; ranging from vertically aligned multiwalled carbon nanotubes (MWCNTs), graphenated carbon nanotubes (g-­CNTs) to carbon nanosheets (CNS); were synthesized using a MPECVD system. The nanostructures were characterized by using scanning electron microscopy (SEM) and Raman spectroscopy. In addition to employing commonly used electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), a new technique was developed to evaluate the energy and power density of individual electrodes. This facilitated comparison of a variety of electrode materials without having to first develop complex device packaging schemes. It was found that smaller pore size and higher density of carbon foliates on a three-dimensional scaffold of carbon nanotubes increased specific capacitance. A design of experiments (DOE) study was conducted to explore the parametric space of the MWCNT system. A range of carbon nanostructures of varying morphology were obtained. It was observed that the capacitance was dependent on defect density. Capacitance increased with defect density.</p><p>A BDD electrode was characterized for use in a module designed to disinfect human liquid waste as a part of a new advanced energy neutral, water and additive-free toilet designed for treating waste at the point of source. The electrode was utilized in a batch process system that generated mixed oxidants from ions present in simulated urine and inactivated E. Coli bacteria. Among the mixed oxidants, the concentration of chlorine species was measured and was found to correlate to the reduction in E. Coli concentration. Finally, a new operating mode was developed that involved pulsing the voltage applied to the BDD anode led to 66% saving in energy required for disinfection and yet successfully reduced E. Coli concentration to less than the disinfection threshold.</p> / Dissertation
2

Advanced Charge-Storage Materials for Supercapacitor Applications

Syed, Aseeb January 2019 (has links)
MnO2 continues to gain traction in the research and development of advanced supercapacitor materials due to its arsenal of advantages, such as high capacitance, low cost, natural abundance, and environmental benignity. However, its low conductivity has hindered its adoption into real-life applications. Compositing MnO2 with conductive additives has proved to be a promising route for the improvement of its power-energy characteristics. Four novel colloidal techniques were developed for the synthesis of MnO2-CNT composites with enhanced performance at high active mass loading. One strategy utilized a Schiff-based linkage of dispersants such as 3,4-Dihydroxybenzaldehyde (DHB) and Toluidine Blue O (TDB) to effectively mix and disperse MnO2 and CNT. Secondly, a co-dispersion technique was also investigated using Gallocyanine to improve dispersion and mixing of MnO2 and MWCNT. Third, a novel liquid-liquid extraction technique opened new avenues in agglomerate-free processing of individual components, which allowed enhanced electrode performance. Lastly, a morphology-modification strategy was also undertaken by synthesizing MnO2 nanorods with the use of advanced organic dispersants to control the aspect ratio and composite nanorods with MWCNT. The second major material investigated was polypyrrole (PPy), a polymer material with high conductivity, ease of synthesis, low-cost, and non-toxicity. However, its low cyclic stability was prevented it from being applied for real-world applications. Certain anionic and aromatic dopants have shown to improve the conductivity and cyclic stability. Therefore, one of the investigations in this work attempted to improve the performance of PPy-CNT composites by use of a novel anionic dopant, Sunset Yellow (SY). For all investigations electrodes with high mass loadings were produced to achieve high areal capacitance, thus ensuring the practicality of the techniques / Thesis / Master of Applied Science (MASc) / Supercapacitors (SCs) and batteries are both electrochemical energy storage devices. While batteries excel at storing energy in high volumes, supercapacitors excel in charging (and discharging) at extremely high rates. It is desirable to obtain the best of both worlds in a single device; high energy volume and fast charging speeds. Although such a feat is not out of the realm of theoretical possibility, current projections forecast supercapacitors to compliment battery technologies instead of replacing them. Nonetheless, constant progression in the field of SCs is needed to sustain and proliferate their adoption into emerging markets. Therefore, the aim of this research was to assist in the endeavours to improve current SC technologies from a materials science standpoint.

Page generated in 0.0487 seconds