• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fabrication of Micro and Nanoparticles of Paclitaxel-loaded Poly L Lactide for Controlled Release using Supercritical Antisolvent Method: Effects of Thermodynamics and Hydrodynamics

Lee, Lai Yeng, Smith, Kenneth A., Wang, Chi-Hwa 01 1900 (has links)
This paper presents the fabrication of controlled release devices for anticancer drug paclitaxel using supercritical antisolvent method. The thermodynamic and hydrodynamic effects during supercritical antisolvent process on the particle properties obtained were investigated. Scanning electron microscopy was employed to study particle sizes and morphologies achieved. It was observed that increasing supercritical pressure improves the surface morphology of particles obtained, and increasing the flow rate of the organic solution jet reduces the particle sizes obtained. A modified Supercritical Antisolvent with Enhanced Mass transfer setup was developed to produce monodispersed nanoparticles with high recovery yield. High performance liquid chromatography was used to determine the encapsulation efficiency and in vitro release profiles of paclitaxel loaded particles obtained. The encapsulation efficiencies of particles obtained using the modified SASEM process were high and up to 83.5%, and sustained release of paclitaxel from the polymer matrix was observed over 36 days release. The thermogram properties of the particles were also analyzed using differential scanning calorimetry to determine the crystalline state of polymer and drug. / Singapore-MIT Alliance (SMA)
2

Fabrication of Controlled Release Devices Using Supercritical Antisolvent Method

Lee, Lai Yeng, Smith, Kenneth A., Wang, Chi-Hwa 01 1900 (has links)
In this study, the supercritical antisolvent with enhanced mass transfer method (SASEM) is used to fabricate micro and nanoparticles of biocompatible and biodegradable polymer PLGA (poly DL lactide co glycolic acid). This process may be extended to the encapsulation of drugs in these micro and nanoparticles for controlled release purposes. Conventional supercritical antisolvent (SAS) process involves spraying a solution (organic solvent + dissolved polymer) into supercritical fluid (CO[subscript 2]), which acts as an antisolvent. The high rate of mass transfer between organic solvent and supercritical CO[subscript 2] results in supersaturation of the polymer in the spray droplet and precipitation of the polymer as micro or nanoparticles occurs. In the SASEM method, ultrasonic vibration is used to atomize the solution entering the high pressure with supercritical CO[subscript 2]. At the same time, the ultrasonic vibration generated turbulence in the high pressure vessel, leading to better mass transfer between the organic solvent and the supercritical CO₂. In this study, two organic solvents, acetone and dichloromethane (DCM) were used in the SASEM process. Phase Doppler Particle Analyzer (PDPA) was used to study the ultrasonic atomization of liquid using the ultrasonic probe for the SASEM process. Scanning Electron Microscopy (SEM) was used to study the size and morphology of the polymer particles collected at the end of the process. / Singapore-MIT Alliance (SMA)
3

Utilization of Carbon Dioxide in Separation Science: Fabrication of a Solid Phase Extraction Sorbent and Investigation of the Greenness of Supercritical Fluid Chromatography

GIbson, Rebekah January 2021 (has links)
No description available.

Page generated in 0.1112 seconds