• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the Restriction of Supercuspidal Representations: An In-Depth Exploration of the Data

Bourgeois, Adèle 31 August 2020 (has links)
Let $\mathbb{G}$ be a connected reductive group defined over a p-adic field F which splits over a tamely ramified extension of F, and let G = $\mathbb{G}(F)$. We also assume that the residual characteristic of F does not divide the order of the Weyl group of $\mathbb{G}$. Following J.K. Yu's construction, the irreducible supercuspidal representation constructed from the G-datum $\Psi$ is denoted $\pi_G(\Psi)$. The datum $\Psi$ contains an irreducible depth-zero supercuspidal representation, which we refer to as the depth-zero part of the datum. Under our hypotheses, the J.K. Yu Construction is exhaustive. Given a connected reductive F-subgroup $\mathbb{H}$ that contains the derived subgroup of $\mathbb{G}$, we study the restriction $\pi_G(\Psi)|_H$ and obtain a description of its decomposition into irreducible components along with their multiplicities. We achieve this by first describing a natural restriction process from which we construct H-data from the G-datum $\Psi$. We then show that the obtained H-data, and conjugates thereof, construct the components of $\pi_G(\Psi)|_H$, thus providing a very precise description of the restriction. Analogously, we also describe an extension process that allows to construct G-data from an H-datum $\Psi_H$. Using Frobenius Reciprocity, we obtain a description for the components of $\Ind_H^G\pi_H(\Psi_H)$. From the obtained description of $\pi_G(\Psi)|_H$, we prove that the multiplicity in $\pi_G(\Psi)|_H$ is entirely determined by the multiplicity in the restriction of the depth-zero piece of the datum. Furthermore, we use Clifford theory to obtain a formula for the multiplicity of each component in $\pi_G(\Psi)|_H$. As a particular case, we take a look at the regular depth-zero supercuspidal representations and obtain a condition for a multiplicity free restriction. Finally, we show that our methods can also be used to define a restriction of Kim-Yu types, allowing to study the restriction of irreducible representations which are not supercuspidal.
2

Explicit formulas for local factors of supercuspidal representations of $GL_n$ and their applications

Ye, Rongqing 17 October 2019 (has links)
No description available.

Page generated in 0.1338 seconds