• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Superfícies de Weingarten Generalizadas do Tipo Rotacional no 3-Espaço Euclidiano / Generalized Weingarten Surfaces of Rotation in 3- Euclidiano Space

VELASCO, Lívio José 01 March 2011 (has links)
Made available in DSpace on 2014-07-29T16:02:16Z (GMT). No. of bitstreams: 1 Livio jose velasco.pdf: 1360182 bytes, checksum: ba73b0fa4e1fa72b63d29154e2c9f945 (MD5) Previous issue date: 2011-03-01 / In this work, we study the surfaces of rotation S which are Weingarten general, in which the Gaussian curvature K and mean curvature H of this surface satisfies the following relationship (w2 􀀀r2)K +2wH +1 = 0, where w and r are harmonic functions with respect to the quadratic form s = II +wIII and II, III are the surface s second and third quadratic form. Inspired by the work of Schief [15], we obtain a characterization of these surfaces determined by functions satisfying a system of ordinary differential equations, as application we prove that with an additional condition these surfaces are spheres. / Neste trabalho estudamos as superfícies de rotações S que são Weingarten generalizada, nas quais a curvatura gaussiana K e curvatura média H de tais superfícies satisfazem a seguinte relação (w2􀀀r2)K+2wH+1 = 0, onde w e r são funções harmônicas com respeito a forma quadrática s = II+wIII e II, III são a segunda e terceira forma quadrática da superfície. Inspirados no trabalho de Schief [15], obtemos uma caracterização destas superfícies determinadas por funções que satisfazem um sistema de equações diferenciais ordinárias, como aplicação provamos que com uma condição adicional essas superfícies são esferas.

Page generated in 0.088 seconds