Spelling suggestions: "subject:"superhelical filament"" "subject:"hyperhelical filament""
1 |
Dynamics of confined biofilaments / Dynamique de biofilaments confinésNam, Gi-moon 28 September 2012 (has links)
Cette thèse est consacrée à la mécanique et à la mécanique statistique de biofilaments/biopolymères et de leur modèle le plus répandu le Worm-Like Chain (WLC) qu’il s’avère nécessaire d’étendre. Nous étudions WLC à 2-d en présence d’obstacles plus proches que la longueur de persistance. Nous caractérisons le mouvement aux temps courts par des simulations numériques complétées par des calculs analytiques. Des concepts similaires servent à décrire des ADN greffés balayés par le front d’une vésicule en cours d’étalement, l’adhésion de la vésicule est promue par des paires biotine/streptavidine qui contraignent les molécules d'ADN sur des chemins étroits où ils peuvent être imagés. Les microtubules (MT) ici stabilisés au taxol, présentent par contre certains comportements qui échappent au WLC et doivent être ramenés à leur structure interne : i)les déflexions latérales d’un MT attaché par un bout correspondent à une longueur de persistance apparente qui augmente avec la longueur ii) les MT adoptent des formes super-hélicoïdales. Ces deux points sont établis au moyen d’analyses de forme des MT. Des transitions de forme corrélées le long du MT mises en évidence sont compatibles avec un modèle basé sur la bistabilité du dimère de tubuline. Finalement un modèle de chaîne super-hélicoïdale comprenant une courbure et une torsion spontanées élargi le WLC. Confiné à 2-d, HWLC peut adopter un état fondamental circulaire ou sinueux caractérisé par le nombre de points d’inflexion où se concentre la torsion (twist-kink). Dans le cas circulaire, il existe des états métastables proches, à petit nombre de twist-kinks, hyperflexibles. / This PhD is devoted to the mechanics and statistical mechanics of biofilaments and their most widespread model, the Worm-Like Chain (WLC) model, which, as it turns out, needs to be extended. We study the WLC in 2-d in the presence of obstacles closer than their persistence length. We characterize the short time motion by numerical simulations complemented by analytical calculations. Similar concepts serve to describe grafted DNAs swept by the front of a spreading vesicle whose adhesion is promoted by biotin/streptavidin bonds, which constrain the DNAs on narrow paths where they can be imaged. Microtubules (MT), here stabilized by taxol, show features which cannot be rationalized by the WLC and shall be related to their internal structure : i)lateral deflections of a clamped MT correspond to an effective persistence length growing with the MT size ii) MT adopt super-helical shapes. These two points are proven by refined image analysis. We analyze shape transitions correlated along the MT which are compatible with a model based on dimer bi-stability. Finally, a super helical chain model (HWLC) allowing for spontaneous curvature and twist is developed which extends the WLC. When confined to 2-d, the HWLC can adopt a ground state which is circular or wavy with inflection points where twist accumulates, so-called twist-kinks. In the circular case there exist close metastable states, with a small number of twist-kinks, which are hyperflexible.
|
2 |
Dynamics of confined biofilamentsNam, Gi-Moon 28 September 2012 (has links) (PDF)
This PhD is devoted to the mechanics and statistical mechanics of biofilaments and their most widespread model, the Worm-Like Chain (WLC) model, which, as it turns out, needs to be extended. We study the WLC in 2-d in the presence of obstacles closer than their persistence length. We characterize the short time motion by numerical simulations complemented by analytical calculations. Similar concepts serve to describe grafted DNAs swept by the front of a spreading vesicle whose adhesion is promoted by biotin/streptavidin bonds, which constrain the DNAs on narrow paths where they can be imaged. Microtubules (MT), here stabilized by taxol, show features which cannot be rationalized by the WLC and shall be related to their internal structure : i)lateral deflections of a clamped MT correspond to an effective persistence length growing with the MT size ii) MT adopt super-helical shapes. These two points are proven by refined image analysis. We analyze shape transitions correlated along the MT which are compatible with a model based on dimer bi-stability. Finally, a super helical chain model (HWLC) allowing for spontaneous curvature and twist is developed which extends the WLC. When confined to 2-d, the HWLC can adopt a ground state which is circular or wavy with inflection points where twist accumulates, so-called twist-kinks. In the circular case there exist close metastable states, with a small number of twist-kinks, which are hyperflexible.
|
Page generated in 0.0695 seconds