Spelling suggestions: "subject:"asuperior province"" "subject:"asuperior rovince""
1 |
REGIONAL VOLCANOGENIC MASSIVE SULPHIDE METALLOGENY OF THE NEOARCHEAN GREENSTONE BELT ASSEMBLAGES ON THE NORTHWEST MARGIN OF THE WAWA SUBPROVINCE, SUPERIOR PROVINCELodge, Robert Wilfred David 08 October 2013 (has links)
The ca. 2720 Ma Vermilion, Shebandowan, Winston Lake, and Manitouwadge greenstone
belts (VGB, SGB, WGB, and MGB, respectively) are located along the northern margin of the Wawa
subprovince. They are interpreted to have formed in broadly similar rifted arc to back-arc
environments, but their base and precious endowment and, in particular, their endowment in VMS
deposits, differ markedly. These difference is metal endowment reflect differences in their
metallogenic history that were examined by comparing their regional, belt-scale lithostratigraphy,
chemostratigraphy, petrogenesis and tectonic history constrained by new U-Pb zircon
geochronology.
The MGB is the most VMS-endowed and isotopically juvenile (Pb and Nd) greenstone belt.
It has a trace element chemostratigraphy that is consistent with a rifted arc to back-arc environment.
The trace element chemostratigraphy of the WGB is also consistent with a rifted-arc to back arc
geodynamic setting. The Winston Lake VMS deposits formed during early rifting of the arc and their
timing is tightly constrained at ca. 2720 Ma by U-Pb ages of the host felsic strata and post-VMS
Zenith gabbro. The Zn-dominated VMS mineralization formed from hydrothermal fluids that were
<300 ° and were possibly boiling in relatively shallow water.
The trace element chemostratigraphy of the VGB, SGB, and WGB indicates a plume-driven
rifted arc to back-arc geodynamic settings. The composition of VMS mineralization, lithofacies, and
alteration in these belts are consistent with a relatively shallower-water environment, which may
have compromised VMS formation. The high-Mg andesites that are typical of, but restricted to, the
SGB formed during compressional “hot” subduction, which resulted in the development of a thicker
arc crust. This thicker crust may have inhibited VMS formation, but favoured the formation of
magmatic sulphide and gold mineralization.
New detrital and magmatic zircon U-Pb geochronology allowed comparison and correlation
of lithostratigraphy and metallogeny between the greenstone belts. U-Pb ages within the VGB also
defined younger, Timiskaming-type volcanic and sedimentary strata that are coeval with similar
deposits in the SGB. These strata are spatially and temporally associated with gold mineralization in
both belts and are coeval with similar deformation and magmatic events in the WGB and along the
northern margin of the Wawa-Abitibi terrane. This indicates that the formation of Timiskaming-type
pull apart basins in the northern part of the Wawa-Abitibi terrane were synchronous, and earlier than
in the southern part, which is consistent with oblique convergence of the Wawa-Abitibi terrane onto
the Superior Province. Detrital zircon geochronology also revealed the presence of a >2720 Ma
iv
zircon population within the Timiskaming-type sedimentary strata of the SGB. This is consistent
with their derivation from the Wabigoon subprovince and suggests trans-terrane transport of detritus
in a foreland –type basin resulting from uplift of the Wabigoon subprovince during accretion of the
Wawa subprovince.
|
2 |
Investigation of Transpressive Deformation Zones in the North Caribou Greenstone Belt (NW Superior) and Relationships with Regional Metamorphism: Implications for the Technothermal Evolution during Archean CratonizationGagnon, Émilie January 2015 (has links)
The Archean North Caribou greenstone belt (NCGB) possesses abundant transpressive deformation zones on its northern margins, which appear to have formed under amphibolite facies conditions. Protracted deformation and regional metamorphism are coeval with widespread magmatism and accretion events in the Superior Province, yet the importance of these shear zones in the tectonic evolution of the NCGB is equivocal. Structural analyses support a transpressive system that strongly implicates horizontal tectonism. This is partly in contrast with some currently proposed models for Archean greenstone belts suggesting synchronous vertical and horizontal movements. Geochemical and microstructural analyses from shear zones indicate heterogeneous deformation/fluids conditions on a km-scale. Monazite and mica geochronological ages indicate metamorphism and deformation occurring during the amalgamation of the Superior craton from ca. 2.75 to 2.4 Ga. The high metamorphic grade background may obscure tectonic signatures, yet some structural and geochemical characteristics remain consistent with other greenstone belts where vertical and horizontal displacement are recorded.
|
3 |
Meso – and Neoarchean tectonic evolution of the northwestern Superior Province: Insights from a U-Pb geochronology, Nd isotope, and geochemistry study of the Island Lake greenstone belt, Northeastern ManitobaParks, Jennifer January 2011 (has links)
What tectonic processes were operating in the Archean, and whether they were similar to the “modern-style” plate tectonics seen operating today, is a fundamental question about Archean geology. The Superior Province is the largest piece of preserved Archean crust on Earth. As such it provides an excellent opportunity to study Archean tectonic processes. Much work has been completed in the southern part of the Superior Province. A well-documented series of discrete, southward younging orogenies related to a series of northward dipping subduction zones, has been proposed for amalgamating this part of the Superior Province. The tectonic evolution in the northwestern Superior Province is much less constrained, and it is unclear if it is related to the series of subduction zones in the southern part of the Superior Province, or if it is related to an entirely different process. Such ideas need to be tested in order to develop a concise model for the Meso – and Neoarchean tectonic evolution of the northwestern Superior Province.
To this end, a field mapping, U-Pb geochronology, Nd isotope, and lithogeochemistry study was undertaken in the Island Lake greenstone belt. This granite-greenstone belt is part of the northern margin of the North Caribou terrane, a larger reworked Mesoarchean crustal block located in the northwestern Superior Province. U-Pb TIMS zircon geochronology data shows that the Island Lake greenstone belt experienced a long and complex geological history that included the deposition of three distinct volcanic assemblages at ca. 2897 Ma, 2852 Ma, and 2744 Ma, as well as a younger clastic sedimentary group, the Island Lake group. All of these volcanic assemblages include felsic and mafic volcanic rocks, as well as a suite of contemporaneous plutonic rocks. The U-Pb data set shows that the Savage Island shear zone, a regional fault structure that transects the Island Lake greenstone belt, is not a terrane-bounding feature as correlative supracrustal assemblages are observed on both sides of it. The Nd isotope data shows that the volcanic assemblages and contemporaneous plutons have been variably contaminated by an older ca. 3.0 Ga crustal source. The mafic volcanic rocks in the assemblages have two distinct geochemical signatures, and show a pattern of decreasing crustal contamination with decreasing age. Together these data suggests that the Meso – and Neoarchean volcanic assemblages are part of an intact primary volcanic stratigraphy that were built on the same ca. 3.0 Ga basement and have autochthonous relationships with each other. This basement is the North Caribou terrane.
The youngest sedimentary group in the belt, the Island Lake group, was deposited between 2712 Ma and 2699 Ma. It consists of “Timiskaming-type” sedimentary rocks, and is the youngest clastic sedimentary package in the belt. A detailed study of detrital zircons in units from the stratigraphic bottom to the top of the sedimentary group indicates an age pattern of detrital zircons that is most consistent with a scenario in which sediments were deposited in inter-diapiric basins created by diapirism and sagduction (i.e., vertical tectonic) processes. During the diapiric ascent of the felsic material, inter-diapiric basins were formed in the synclines between adjacent domes, into which sediments were deposited.
U-Pb zircon TIMS geochronology identified two ages of deformation in the Island Lake greenstone belt. Two dykes that crosscut an older, D1 foliation place a minimum age of ca. 2723 Ma on the D1 deformation, and two syn-kinematic dykes date movement along two transpressional shear zones to 2700 Ma.
Together all these data indicate that the tectonic evolution in the Island Lake greenstone belt and in the northwestern Superior Province took place in three main stages. The first two stages involved the generation of Meso – and Neoarchean volcanic assemblages and contemporaneous plutonic rocks due to southward dipping subduction under the North Caribou micro-continent. The third stage involved the deposition of late “Timiskaming-type” sediments during vertical tectonic processes in conjunction with horizontal tectonic movement along late transpressional shear zones at ca. 2.70 Ga. At the end of this process the North Superior superterrane was terminally docked to the North Caribou terrane along the North Kenyon fault. This study shows that while a version of horizontal or “modern” style plate tectonics were operating in the Archean, vertical tectonic processes were also occurring and that these processes operated synchronously in the Neoarchean.
|
4 |
Meso – and Neoarchean tectonic evolution of the northwestern Superior Province: Insights from a U-Pb geochronology, Nd isotope, and geochemistry study of the Island Lake greenstone belt, Northeastern ManitobaParks, Jennifer January 2011 (has links)
What tectonic processes were operating in the Archean, and whether they were similar to the “modern-style” plate tectonics seen operating today, is a fundamental question about Archean geology. The Superior Province is the largest piece of preserved Archean crust on Earth. As such it provides an excellent opportunity to study Archean tectonic processes. Much work has been completed in the southern part of the Superior Province. A well-documented series of discrete, southward younging orogenies related to a series of northward dipping subduction zones, has been proposed for amalgamating this part of the Superior Province. The tectonic evolution in the northwestern Superior Province is much less constrained, and it is unclear if it is related to the series of subduction zones in the southern part of the Superior Province, or if it is related to an entirely different process. Such ideas need to be tested in order to develop a concise model for the Meso – and Neoarchean tectonic evolution of the northwestern Superior Province.
To this end, a field mapping, U-Pb geochronology, Nd isotope, and lithogeochemistry study was undertaken in the Island Lake greenstone belt. This granite-greenstone belt is part of the northern margin of the North Caribou terrane, a larger reworked Mesoarchean crustal block located in the northwestern Superior Province. U-Pb TIMS zircon geochronology data shows that the Island Lake greenstone belt experienced a long and complex geological history that included the deposition of three distinct volcanic assemblages at ca. 2897 Ma, 2852 Ma, and 2744 Ma, as well as a younger clastic sedimentary group, the Island Lake group. All of these volcanic assemblages include felsic and mafic volcanic rocks, as well as a suite of contemporaneous plutonic rocks. The U-Pb data set shows that the Savage Island shear zone, a regional fault structure that transects the Island Lake greenstone belt, is not a terrane-bounding feature as correlative supracrustal assemblages are observed on both sides of it. The Nd isotope data shows that the volcanic assemblages and contemporaneous plutons have been variably contaminated by an older ca. 3.0 Ga crustal source. The mafic volcanic rocks in the assemblages have two distinct geochemical signatures, and show a pattern of decreasing crustal contamination with decreasing age. Together these data suggests that the Meso – and Neoarchean volcanic assemblages are part of an intact primary volcanic stratigraphy that were built on the same ca. 3.0 Ga basement and have autochthonous relationships with each other. This basement is the North Caribou terrane.
The youngest sedimentary group in the belt, the Island Lake group, was deposited between 2712 Ma and 2699 Ma. It consists of “Timiskaming-type” sedimentary rocks, and is the youngest clastic sedimentary package in the belt. A detailed study of detrital zircons in units from the stratigraphic bottom to the top of the sedimentary group indicates an age pattern of detrital zircons that is most consistent with a scenario in which sediments were deposited in inter-diapiric basins created by diapirism and sagduction (i.e., vertical tectonic) processes. During the diapiric ascent of the felsic material, inter-diapiric basins were formed in the synclines between adjacent domes, into which sediments were deposited.
U-Pb zircon TIMS geochronology identified two ages of deformation in the Island Lake greenstone belt. Two dykes that crosscut an older, D1 foliation place a minimum age of ca. 2723 Ma on the D1 deformation, and two syn-kinematic dykes date movement along two transpressional shear zones to 2700 Ma.
Together all these data indicate that the tectonic evolution in the Island Lake greenstone belt and in the northwestern Superior Province took place in three main stages. The first two stages involved the generation of Meso – and Neoarchean volcanic assemblages and contemporaneous plutonic rocks due to southward dipping subduction under the North Caribou micro-continent. The third stage involved the deposition of late “Timiskaming-type” sediments during vertical tectonic processes in conjunction with horizontal tectonic movement along late transpressional shear zones at ca. 2.70 Ga. At the end of this process the North Superior superterrane was terminally docked to the North Caribou terrane along the North Kenyon fault. This study shows that while a version of horizontal or “modern” style plate tectonics were operating in the Archean, vertical tectonic processes were also occurring and that these processes operated synchronously in the Neoarchean.
|
5 |
Crustal-scale Shear Zones Recording 400 m.y. of Tectonic Activity in the North Caribou Greenstone Belt, Western Superior Province of CanadaKalbfleisch, Netasha 24 September 2012 (has links)
A series of crustal-scale shear zones demarcates the northern and eastern margins of the North Caribou greenstone belt (NCGB), proximal to a Mesoarchean terrane boundary in the core of the western Superior Province of Canada. The dominant deformation produced a pervasive steeply dipping fabric that trends broadly parallel to the doubly arcuate shape of the belt and was responsible for tight folding the banded iron formation host to Goldcorp’s prolific gold deposit at Musselwhite mine. The shear zones in the North Caribou greenstone belt are of particular interest because of their ability to channel hydrothermal fluids with the potential to bear ore and cause alteration of the middle to shallow crust. Shear zones are commonly reactivated during subsequent tectonism, but exhibit a consistent and dominant dextral shear sense across the belt; fabric-forming micas and chlorite are generally Mg-rich. Although garnets samples from within the shear zones are dominantly almandine, they possess variable geochemical trends (HREEs of >2 orders of magnitude) and can be syn-, intra-, or post-tectonic in origin. In situ geochronological analysis of zircon (U-Pb) and monazite (total-Pb) in high strain rocks in and around the NCGB, interpreted in light of in situ geochemical analysis of garnet and fabric-forming micas and chlorite, reveals four relatively discrete events that span 400 million years. Metamorphism of the mid-crust was coeval with magmatism during docking of the Island Lake domain at c. 2.86 Ga and subsequent terrane accretion at the north and south margins of the North Caribou Superterrane from c. 2.75 to 2.71 Ga. Transpressive shear at c. 2.60 to 2.56 Ga and late re-activation of shear zones at c. 2.44 Ga produced a steeply-dipping pervasive fabric, and channeled fluids for late crystallization of garnet and monazite recorded in the Markop Lake deformation zone. These observations implicate a horizontal tectonic model similar to the modern eastern Pacific plate margin. Further, this study highlights the caution that should be exercised when using traditional rock forming metamorphic minerals (mica, chlorite, garnet) when attempting to vector into zones of hydrothermal alteration within midcrustal rocks.
|
6 |
Crustal-scale Shear Zones Recording 400 m.y. of Tectonic Activity in the North Caribou Greenstone Belt, Western Superior Province of CanadaKalbfleisch, Netasha 24 September 2012 (has links)
A series of crustal-scale shear zones demarcates the northern and eastern margins of the North Caribou greenstone belt (NCGB), proximal to a Mesoarchean terrane boundary in the core of the western Superior Province of Canada. The dominant deformation produced a pervasive steeply dipping fabric that trends broadly parallel to the doubly arcuate shape of the belt and was responsible for tight folding the banded iron formation host to Goldcorp’s prolific gold deposit at Musselwhite mine. The shear zones in the North Caribou greenstone belt are of particular interest because of their ability to channel hydrothermal fluids with the potential to bear ore and cause alteration of the middle to shallow crust. Shear zones are commonly reactivated during subsequent tectonism, but exhibit a consistent and dominant dextral shear sense across the belt; fabric-forming micas and chlorite are generally Mg-rich. Although garnets samples from within the shear zones are dominantly almandine, they possess variable geochemical trends (HREEs of >2 orders of magnitude) and can be syn-, intra-, or post-tectonic in origin. In situ geochronological analysis of zircon (U-Pb) and monazite (total-Pb) in high strain rocks in and around the NCGB, interpreted in light of in situ geochemical analysis of garnet and fabric-forming micas and chlorite, reveals four relatively discrete events that span 400 million years. Metamorphism of the mid-crust was coeval with magmatism during docking of the Island Lake domain at c. 2.86 Ga and subsequent terrane accretion at the north and south margins of the North Caribou Superterrane from c. 2.75 to 2.71 Ga. Transpressive shear at c. 2.60 to 2.56 Ga and late re-activation of shear zones at c. 2.44 Ga produced a steeply-dipping pervasive fabric, and channeled fluids for late crystallization of garnet and monazite recorded in the Markop Lake deformation zone. These observations implicate a horizontal tectonic model similar to the modern eastern Pacific plate margin. Further, this study highlights the caution that should be exercised when using traditional rock forming metamorphic minerals (mica, chlorite, garnet) when attempting to vector into zones of hydrothermal alteration within midcrustal rocks.
|
7 |
Crustal-scale Shear Zones Recording 400 m.y. of Tectonic Activity in the North Caribou Greenstone Belt, Western Superior Province of CanadaKalbfleisch, Netasha January 2012 (has links)
A series of crustal-scale shear zones demarcates the northern and eastern margins of the North Caribou greenstone belt (NCGB), proximal to a Mesoarchean terrane boundary in the core of the western Superior Province of Canada. The dominant deformation produced a pervasive steeply dipping fabric that trends broadly parallel to the doubly arcuate shape of the belt and was responsible for tight folding the banded iron formation host to Goldcorp’s prolific gold deposit at Musselwhite mine. The shear zones in the North Caribou greenstone belt are of particular interest because of their ability to channel hydrothermal fluids with the potential to bear ore and cause alteration of the middle to shallow crust. Shear zones are commonly reactivated during subsequent tectonism, but exhibit a consistent and dominant dextral shear sense across the belt; fabric-forming micas and chlorite are generally Mg-rich. Although garnets samples from within the shear zones are dominantly almandine, they possess variable geochemical trends (HREEs of >2 orders of magnitude) and can be syn-, intra-, or post-tectonic in origin. In situ geochronological analysis of zircon (U-Pb) and monazite (total-Pb) in high strain rocks in and around the NCGB, interpreted in light of in situ geochemical analysis of garnet and fabric-forming micas and chlorite, reveals four relatively discrete events that span 400 million years. Metamorphism of the mid-crust was coeval with magmatism during docking of the Island Lake domain at c. 2.86 Ga and subsequent terrane accretion at the north and south margins of the North Caribou Superterrane from c. 2.75 to 2.71 Ga. Transpressive shear at c. 2.60 to 2.56 Ga and late re-activation of shear zones at c. 2.44 Ga produced a steeply-dipping pervasive fabric, and channeled fluids for late crystallization of garnet and monazite recorded in the Markop Lake deformation zone. These observations implicate a horizontal tectonic model similar to the modern eastern Pacific plate margin. Further, this study highlights the caution that should be exercised when using traditional rock forming metamorphic minerals (mica, chlorite, garnet) when attempting to vector into zones of hydrothermal alteration within midcrustal rocks.
|
Page generated in 0.0508 seconds