• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 86
  • 12
  • 12
  • 6
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 168
  • 59
  • 46
  • 33
  • 22
  • 21
  • 21
  • 20
  • 19
  • 18
  • 17
  • 16
  • 16
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Studies On Epitaxial Perovskite Biferroic Heterostructures

Chaudhuri, Ayan Roy 01 1900 (has links)
The present research work focuses on the fabrication and characterization of epitaxial heterostructures of 0.7 Pb(Mg1/3N2/3)O3 – 0.3 PbTiO3 (PMN-PT) and La0.6Sr0.4MnO3 (LSMO) using multi target pulsed laser ablation technique. Different heterostructures such as bilayered thin films with different individual layer thickness; symmetric and asymmetric superlattices of different periodicities were fabricated. Roles of individual layer thickness, elastic strain and interfaces between PMN-PT and LSMO layers on different physical properties were studied. An attempt has been made to understand the influence of the charge depleted interface states in addition to the probable strain mediated elastic coupling effect on the observed magneto-dielectric response in these engineered heterostructures. Chapter 1 provides a brief introduction to the multiferroic materials, occurrence of magnetoelectric (ME) coupling in them, their possible technological applications and the challenges involved. A short historical account of the multiferroic research is discussed to emphasize the importance of artificial multiferroics, particularly the engineered thin film heterostructures. Finally the specific objectives of the current research are outlined. Chapter 2 deals with the various experimental studies carried out in this research work. It gives the details of the experimental set up and the basic operation principles of various structural and physical characterizations of the materials prepared. A brief explanation of material fabrication, structural, micro structural and physical property measurements is discussed. Chapter 3 addresses the phase formation, structural and microstructural features of the engineered heterostructures fabricated epitaxially on single crystalline LaAlO3 (100) substrates. A thin layer of LaNiO3 used as the bottom electrode material for electrical characterizations was grown on the bare substrate prior to the fabrication of the PMN-PT/LSMO heterostructures. The structural and microstructural features of different individual layers were also studied by fabricating single layer thin films of the materials. The effects of individual layer thicknesses on the surface roughness, grain size and lattice strain of the heterostructures are discussed. Chapter 4 deals with the ferroelectric studies of the PMN-PT/LSMO epitaxial heterostructures. Polarization hysteresis (P-E), capacitance – voltage (C-V) and pulsed polarization (PUND) measurements were carried out as functions of applied voltage, frequency and delay time to characterize the ferroelectric properties of the heterostructures. All the bilayered heterostructures exhibited robust ferroelectric response and contribution of non – remnant components to their polarization behaviour were observed from the P-E studies. The symmetric superlattices did not exhibit any ferroelectricity due to high leakage current conduction. After optimizing the LSMO and PMN-PT layer thicknesses ferroelectricity was observed in the asymmetric superlattices accompanied by substantial reduction in the leakage current conduction. The P-E loops were found to be asymmetrically shifted along the electric field axis in all the superlattices indicating the presence of dielectric passive layers and strong depolarizing fields at the interfaces between PMN-PT and LSMO. Chapter 5 deals with the ferromagnetic studies of the PMN-PT/LSMO heterostructures. All the heterostructures exhibited ferromagnetic behaviour in the temperature range of 10 K – 300 K with an in plane magnetic easy axis ([100]) compared to the out of plane ([001]) direction. The magnetization behaviour of the bilayers and superlattices as a function of magnetic field strength, temperature and different individual layer thickness of PMN-PT and LSMO are discussed in terms of the oxygen deficiency, magnetic dead layers and lattice strain effects in these engineered epitaxial heterostructures. Chapter 6 addresses the magneto-dielectric response, dielectric properties and ac conduction properties of the engineered biferroic heterostructures. In order to investigate the manifestation of strain mediated ME coupling in these heterostructures their dielectric response as a function of ac electric signal frequency have been studied under different static magnetic fields over a wide range of temperatures. The appearance of magneto-capacitance and its dependence on magnetic field strength and temperature along with the magnetoresistive characteristics of the heterostructures suggested that the charge depleted interfaces between PMN-PT and LSMO can have an effect on the observed dielectric response in addition to the probable strain mediated ME coupling. Dielectric characterization of the heterostructures performed over a wide range of temperature indicated a Maxwell-Wagner type relaxation mechanism. The manifestation of Maxwell-Wagner effect and the very low activation energy of ac conductivity obtained from the ac conduction studies revealed the strong influence of the charge depleted interfaces between PMN-PT and LSMO on the dielectric properties of the heterostructures. Chapter 7 deals with the dc leakage current conduction characteristics of the heterostructures. The leakage current characterization was performed over a wide range of temperature and analyzed in the framework of different models to investigate the leakage mechanism. All the heterostructures were found to obey the power law I∝Vα over the entire range of temperature with different values of α at different applied voltages. The bilayered heterostructures exhibited ohmic conduction in the lower electric field region and space charge limited conduction was observed at higher electric fields. On the other hand the low field dc conduction behaviour of the superlattices could not be attributed unambiguously to a single mechanism. Depending on the superlattice periodicity the low field conduction behaviour was dominated by either Poole-Frenkel (PF) emission or a combined contribution from the PF effect and ohmic conduction. At higher electric fields all the superlattices exhibited space charge limited conduction. Chapter 8 gives the summary and conclusions of the present study and also discusses about the future work that could give more insight into the understanding of the engineered epitaxial biferroic heterostructures.
82

Synthesis and characterization of carbon nanotubes, gold nanorods, silica coated nanocrystals, and binary nanocrystal superlattices

Smith, Danielle Kristin 23 October 2009 (has links)
Nanomaterials such as carbon nanotubes, gold nanorods, magnetic nanocrystals, and binary nanocrystal superlattices have exciting potential applications. However, before these ideas can be applied, it is imperative to fully understand the materials synthesis. Multiwall carbon nanotubes were synthesized in supercritical toluene using cobaltocene, nickelocene, ferrocene, or metal nanocrystals as catalysts. Toluene served as both the solvent and carbon source for nanotube growth. The reaction was optimized by introducing supplemental carbon sources; either hexane or ethanol increased the yield relative to pure toluene and catalytic amounts of water minimized carbon filament and amorphous carbon formation. Gold nanorods were synthesized by the colloidal seed-mediated, surfactantassisted approach using cetyltrimethylammonium bromide (CTAB) obtained from ten different suppliers. The gold nanorod yield depended strongly on the CTAB used: with the same recipe, three of the CTABs produced only spherical particles, whereas the other CTABs produced nanorods with nearly 100% yield. Inductively coupled plasma mass spectrometry revealed a trace iodide impurity in the CTABs that did not yield nanorods. Further experiments introducing potassium iodide to the nanorod synthesis verified the detrimental effect of iodide on nanorod formation. Multifunctional colloidal core-shell nanoparticles of magnetic nanocrystals or gold nanorods coated with a fluorescent dye (Tris(2,2 -bipyridyl)dichlororuthenium(II) hexahydrate) doped silica shells were also synthesized. The as-prepared magnetic nanocrystals were initially hydrophobic and silica coated using a microemulsion approach, while the gold nanorods were hydrophilic and silica coated using a Stöber process. These colloidal heterostructures have the potential to be used as dual-purpose tags, exhibiting a fluorescent signal that could be combined with either dark-field optical contrast or enhanced contrast in magnetic resonance imaging. Binary superlattices (BSLs) of large iron oxide and small gold nanocrystals were assembled by slow evaporation of colloidal dispersions on tilted substrates. SEM and grazing incidence small angle X-ray scattering (GISAXS) confirmed the BSLs were simple hexagonal AB2 superlattices with long range order. GISAXS also revealed that the superlattice was slightly contracted perpendicular to the substrate as a result of solvent drying during the deposition process. Additionally, in some BSLs nearly periodic superlattice dislocations consisting of inserted half-planes of gold nanocrystals were observed. / text
83

Optical and luminescence properties of hydrogenated amorphous carbon

Rusli January 1996 (has links)
No description available.
84

Transport of electrons in two-dimensional lateral surface superlattices

Chowdhury, Sujaul Haque January 2001 (has links)
No description available.
85

Lateral surface superlattices in strained InGaAs layers

Milton, Brian E. January 2000 (has links)
No description available.
86

The chemical and magnetic structures of rare earth alloys and superlattices

Clegg, Paul S. January 2000 (has links)
No description available.
87

Aproximação de Thomas-Fermi aplicada a estruturas semicondutoras delta-dopadas / The Thomas-Fermi theory of Delta-Si:GaAs superlattices

Barbosa, José Camilo 03 September 1992 (has links)
Neste trabalho usamos a teoria de Thomas-Fermi para estudar as propriedades eletrônicas de semicondutores planarmente dopados, ou delta-dopados, com densidade de dopantes de moderada a alta. O principal objetivo do trabalho é a verificação de que esta teoria apresenta muito bons resultados com os do método auto-consistente na aproximação de Hartree quando aplicada a este tipo de problema. Verificamos que muitas situações físicas relacionadas a semicondutores delta-dopados podem ser descritas de uma maneira simples e com muito bons resultados. Estudamos o problema de um poço isolado e o problema da super-rede, comparando os resultados de Thomas-Fermi e Hartree. / In this work we have used the Thomas-Fermi theory to study the electronic properties of planar doped semiconductors, or delta-doping, with a moderate to high density of dopants. The main aim of this work is to verify that this theory gives very good results when compared with the self-consistent method in the Hartree aproximation. We have checked that many physical situations related to delta-doping can be described in a simple manner and also with very good results. We have studied the single delta problem and the superlattice problem and we have compared the Thomas-Fermi´s and Hartree´s results.
88

Efeitos de tunelamento na energia de ligação de impurezas doadoras rasas em super-redes / Tunneling effects in the binding energy of shallow impurities in GaAs superlattices

Ferreira, Robson 17 August 1987 (has links)
Energias de ligação do estado fundamental de doadores rasos em super-redes são consideradas teoricamente com o auxílio de um procedimento variacional que leva em conta a mistura do contínuo de estados da minibanda à qual o mesmo está associado. Os cálculos são realizados para um grande número de parâmetros de super-rede e qualquer posição da impureza na mesma. É mostrado que a dependência da energia de ligação com os vários parâmetros envolvidos pode ser completamente explicada em termos de um modelo simples unidimensional (tight-binding) onde a largura da respectiva minibanda de condução e a energia de ligação no Limite de poço isolado são os únicos parâmetros relevantes. A extrema concordância quantitativa entre as energias de ligação derivadas deste modelo e as obtidas pelo método variacional mais rigoroso vem enfatizar o papel fundamental desempenhado pela largura de minibanda com o único parâmetro relevante ao se levar em conta os efeitos de tunelamento existentes nas super-redes. / A variational procedure which takes into account the mixing of a continuum of subband states has been used to investigate the binding energies of shallow donors in superlattices. The calculations where performed for a wide range of superlattices parameters and impurity positions. It is shown that the dependence of the binding energy upon the various superlattice parameters can be completely explained in terms of a simple onedimensional tight-binding model where the bandwidth of the respective conduction subband and the binding energy in the isolated quantum well are the only relevant parameters. The quantitative overall agreement between the binding energies derived from this model and those found variationally is excellent and emphasizes the fundamental role played by the bandwidth as the only relevant parameter accounting for the tunneling effects.
89

Espalhamento Raman eletrônico via flutuações de densidade de spin em super-redes &#948-Si:GaAs / Electronic Raman spectrum of spin-density fluctuations in &#948-Si:GaAs superlattices

Anjos, Virgílio de Carvalho dos 29 October 1993 (has links)
Neste trabalho apresentamos um cálculo teórico para o espalhamento Raman eletrônico via flutuações de densidade de spin de uma super-rede &#948-dopada de GaAs. A estrutura eletrônica da super-rede é determinada utilizando-se a teoria do funcional densidade dentro da aproximação de densidade local. O cálculo da seção de choque revela que sob condições de extrema ressonância existe uma forte dependência das formas de linha com a freqüência de excitação indicando a coexistência de um gás bi e tri-dimensional de elétrons nesta estrutura. Os resultados obtidos mostram excelente acordo entre teoria e experimento. / In this work we theoretically investigate the electronic Raman scattering by spin density fluctuations in periodically &#948-doped GaAs. The electronic structure of the superlattice is determined using density functional theory within the local-density-functional approximation. The calculation of the cross section reveals a strong dependence of the line shape on the exciting frequency under conditions of extreme resonance, which indicates the coexistence of a two and three-dimensional electron gas. The results show an excellent agreement between theory and experiment.
90

Síntese e estudo da auto-organização de membranas de superredes binárias baseadas em nanopartículas de ferritas / Syntheses and self-assembled binary nanocrystal superlattices of ferrites

Neves, Herbert Rodrigo 08 December 2017 (has links)
O estudo do ordenamento de nanopartículas em estruturas bi e tridimensionais, também conhecidas como superredes, é de grande interesse científico e tecnológico, tanto pelo interesse em se explicar a origem e as consequências deste fenômeno, quanto pelas possibilidades de aplicação oriundas das propriedades observadas nestes sistemas. Quando são utilizados dois tipos de nanomateriais diferentes em tamanho e/ou composição química, tem-se a formação de superredes binárias. Estas estruturas apresentam propriedades que são resultado das propriedades individuais de seus constituintes e, além disso, do conjunto de interações que existem no sistema. Graças a este conjunto de propriedades e interações coletivas, o princípio de se empregar nanopartículas como \"building blocks\" para a criação ou aprimoramento de dispositivos funcionais. Assim, neste trabalho são discutidas as sínteses de óxidos magnéticos do tipo MFe2O4 (com M = Co, Fe ou Mn) e as características necessárias para o emprego destes na formação de superredes de nanopartículas. Os materiais foram sintetizados procurando-se alcançar uma estreita distribuição de tamanho e homogeneidade quanto à forma. Foram empregados sistemas de nanopartículas nos estudos para a formação de superredes que apresentaram polidispersividade entre 6 e 20%, de forma a discutir o efeito desta propriedade no ordenamento das nanopartículas. Observou-se que o ordenamento em escala macroscópica é fortemente influenciado pela tensão de superfície da subfase, enquanto que o arranjo local das nanopartículas em relação aos seus vizinhos mais próximos é mais influenciado pela taxa de evaporação do solvente e pelas interações interpartículas. Para a formação de superestruturas binárias foram empregadas as nanopartículas de CoO/CoFe2O4 com 9,6 nm ou de Fe3O4 de 10,7 nm, com nanopartículas de CdSe de 3,6 nm. Os sistemas de nanopartículas binárias apresentaram arranjos do tipo AlB2 e tiveram, em sua maioria, crescimento na forma de supercristais facetados. A formação de estruturas bidimensionais com crescimento ao longo do plano da membrana foi favorecida pelo aumento na proporção das nanopartículas de maior diâmetro em relação às menores. A compreensão do fenômeno de auto-organização em membranas de superredes binárias possibilita a obtenção de novos materiais nanoestruturados e que apresentem propriedades moduladas. / Self-assembly nanoparticles into superlattices array have attracted significant attention both for the scientific understanding of nanocrystals ordering process and the development of new functional devices using bottom up techniques. The co-assembly of two types of nanoparticles in binary nanoparticles superlattices provides a new way to design metamaterials with unusual and modulated properties. These unusual properties arise from interparticle interactions in the superlattice structure, and from nanoparticles physical properties. To obtain highly ordered structures, it is required that nanocrystals have narrow size distribution. This thesis presents the synthesis of oxide magnetic nanoparticles (MFe2O4; M = Co, Fe, or Mn) and their application as building blocks in nanocrystal superlattices. Nanoparticles presented size distribution from 6% to 20%, and their assemblies has shown amorphous structure when samples have size distribution above 10%. Self-assembled nanoparticles superlattices in the liquid-air interface were obtained using either single or binary components. Single component superlattices were used as model for the understand of self-assembly process, which depends on subphase surface tension and dispersion evaporation rate. Nanocrystals superlattices were obtained from CdSe nanoparticles, with average size of 3,6 nm, and CoO/CoFe2O4 with size of 9,6 nm, and was observed a AlB2-type superstructure. The same superlattice structure was obtained for CdSe and Fe3O4, with average size of 10,7 nm, which indicate that AlB2 is the equilibrium phase for a rage of radii ratios and nanoparticles stoichiometry. These findings enable to better understand self-assembled binary nanocrystal superlattices formation and how to manipulate interparticle interactions in order to synthesize highly ordered structures.

Page generated in 0.0539 seconds